基于人工智能的肝细胞癌精准影像学诊断和复发预测
DOI: 10.3969/j.issn.1001-5256.2022.03.006
利益冲突声明: 所有作者均声明不存在利益冲突。
作者贡献声明: 刘一萍、李新平、夏金菊、宋凯荣负责文献收集与总结; 陈磊、刘婉敏及贾宁阳负责文章攥写及修改。
Accurate imaging diagnosis and recurrence prediction of hepatocellular carcinoma based on artificial intelligence
-
摘要: 人工智能在医疗领域的融合发展迅速,特别在影像医学的诊断、治疗和疗效评估等方面有突破性进展。本文回顾了人工智能在肝细胞癌影像学诊断及其结合临床特征进行疗效评估和预后预测的效能方面的研究进展,展望了在日益增长的临床需求与快速进步的诊疗技术时代,如何将人工智能更好地运用于肝细胞癌影像学实践中。Abstract: The integration of artificial intelligence into the medical field is developing rapidly and has achieved ground-breaking advances in the diagnosis, treatment, and efficacy evaluation of imaging medicine. This article reviews the research advances in artificial intelligence in imaging diagnosis of hepatocellular carcinoma and its performance in evaluating treatment outcome and predicting prognosis in combination with clinical features and looks forward to how artificial intelligence can be better used in the practice of hepatocellular carcinoma imaging in the era of growing clinical needs and rapid advances in diagnosis and treatment techniques.
-
Key words:
- Hepatocellular Carcinoma /
- Diagnostic Imaging /
- Recurrence /
- Forecasting
-
[1] MARRERO JA, KULIK LM, SIRLIN CB, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases[J]. Hepatology, 2018, 68(2): 723-750. DOI: 10.1002/hep.29913. [2] KAMBADAKONE AR, FUNG A, GUPTA RT, et al. Correction to: LI-RADS technical requirements for CT, MRI, and contrast-enhanced ultrasound[J]. Abdom Radiol (NY), 2018, 43(1): 240. DOI: 10.1007/s00261-017-1345-7. [3] JIANG H, LIU X, CHEN J, et al. Man or machine? Prospective comparison of the version 2018 EASL, LI-RADS criteria and a radiomics model to diagnose hepatocellular carcinoma[J]. Cancer Imaging, 2019, 19(1): 84. DOI: 10.1186/s40644-019-0266-9. [4] HEIMBACH JK, KULIK LM, FINN RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma[J]. Hepatology, 2018, 67(1): 358-380. DOI: 10.1002/hep.29086. [5] CUOCOLO R, CARUSO M, PERILLO T, et al. Machine learning in oncology: A clinical appraisal[J]. Cancer Lett, 2020, 481: 55-62. DOI: 10.1016/j.canlet.2020.03.032. [6] HU W, YANG H, XU H, et al. Radiomics based on artificial intelligence in liver diseases: Where we are?[J]. Gastroenterol Rep(Oxf), 2020, 8(2): 90-97. DOI: 10.1093/gastro/goaa011. [7] LANGLOTZ CP, ALLEN B, ERICKSON BJ, et al. A roadmap for foundational research on artificial intelligence in medical imaging: From the 2018 NIH/RSNA/ACR/The Academy Workshop[J]. Radiology, 2019, 291(3): 781-791. DOI: 10.1148/radiol.2019190613. [8] SAVADJIEV P, CHONG J, DOHAN A, et al. Demystification of AI-driven medical image interpretation: Past, present and future[J]. Eur Radiol, 2019, 29(3): 1616-1624. DOI: 10.1007/s00330-018-5674-x. [9] YAMADA A, OYAMA K, FUJITA S, et al. Dynamic contrast-enhanced computed tomography diagnosis of primary liver cancers using transfer learning of pretrained convolutional neural networks: Is registration of multiphasic images necessary?[J]. Int J Comput Assist Radiol Surg, 2019, 14(8): 1295-1301. DOI: 10.1007/s11548-019-01987-1. [10] CHOY G, KHALILZADEH O, MICHALSKI M, et al. Current applications and future impact of machine learning in radiology[J]. Radiology, 2018, 288(2): 318-328. DOI: 10.1148/radiol.2018171820. [11] CHARTRAND G, CHENG PM, VORONTSOV E, et al. Deep learning: A primer for radiologists[J]. Radiographics, 2017, 37(7): 2113-2131. DOI: 10.1148/rg.2017170077. [12] FENG ST, JIA Y, LIAO B, et al. Preoperative prediction of microvascular invasion in hepatocellular cancer: A radiomics model using Gd-EOB-DTPA-enhanced MRI[J]. Eur Radiol, 2019, 29(9): 4648-4659. DOI: 10.1007/s00330-018-5935-8. [13] HARDING-THEOBALD E, LOUISSAINT J, MARAJ B, et al. Systematic review: Radiomics for the diagnosis and prognosis of hepatocellular carcinoma[J]. Aliment Pharmacol Ther, 2021, 54(7): 890-901. DOI: 10.1111/apt.16563. [14] JIMÉNEZ PÉREZ M, GRANDE RG. Application of artificial intelligence in the diagnosis and treatment of hepatocellular carcinoma: A review[J]. World J Gastroenterol, 2020, 26(37): 5617-5628. DOI: 10.3748/wjg.v26.i37.5617. [15] WAKABAYASHI T, OUHMICH F, GONZALEZ-CABRERA C, et al. Radiomics in hepatocellular carcinoma: A quantitative review[J]. Hepatol Int, 2019, 13(5): 546-559. DOI: 10.1007/s12072-019-09973-0. [16] MA X, WEI J, GU D, et al. Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT[J]. Eur Radiol, 2019, 29(7): 3595-3605. DOI: 10.1007/s00330-018-5985-y. [17] HECTORS SJ, LEWIS S, BESA C, et al. MRI radiomics features predict immuno-oncological characteristics of hepatocellular carcinoma[J]. Eur Radiol, 2020, 30(7): 3759-3769. DOI: 10.1007/s00330-020-06675-2. [18] WEI J, JIANG H, GU D, et al. Radiomics in liver diseases: Current progress and future opportunities[J]. Liver Int, 2020, 40(9): 2050-2063. DOI: 10.1111/liv.14555. [19] LEWIS S, HECTORS S, TAOULI B. Radiomics of hepatocellular carcinoma[J]. Abdom Radiol (NY), 2021, 46(1): 111-123. DOI: 10.1007/s00261-019-02378-5. [20] CUOCOLO R, COMELLI A, STEFANO A, et al. Deep learning whole- gland and zonal prostate segmentation on a public MRI dataset[J]. J Magn Reson Imaging, 2021, 54(2): 452-459. DOI: 10.1002/jmri.27585. [21] NAYAK A, BAIDYA KAYAL E, ARYA M, et al. Computer-aided diagnosis of cirrhosis and hepatocellular carcinoma using multi-phase abdomen CT[J]. Int J Comput Assist Radiol Surg, 2019, 14(8): 1341-1352. DOI: 10.1007/s11548-019-01991-5. [22] WARDHANA G, NAGHIBI H, SIRMACEK B, et al. Toward reliable automatic liver and tumor segmentation using convolutional neural network based on 2.5D models[J]. Int J Comput Assist Radiol Surg, 2021, 16(1): 41-51. DOI: 10.1007/s11548-020-02292-y. [23] OUHMICH F, AGNUS V, NOBLET V, et al. Liver tissue segmentation in multiphase CT scans using cascaded convolutional neural networks[J]. Int J Comput Assist Radiol Surg, 2019, 14(8): 1275-1284. DOI: 10.1007/s11548-019-01989-z. [24] BOUSABARAH K, LETZEN B, TEFERA J, et al. Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-enhanced MRI using deep learning[J]. Abdom Radiol (NY), 2021, 46(1): 216-225. DOI: 10.1007/s00261-020-02604-5. [25] ZHEN SH, CHENG M, TAO YB, et al. Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data[J]. Front Oncol, 2020, 10: 680. DOI: 10.3389/fonc.2020.00680. [26] JANSEN M, KUIJF HJ, VELDHUIS WB, et al. Automatic classification of focal liver lesions based on MRI and risk factors[J]. PLoS One, 2019, 14(5): e0217053. DOI: 10.1371/journal.pone.0217053. [27] MOKRANE FZ, LU L, VAVASSEUR A, et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules[J]. Eur Radiol, 2020, 30(1): 558-570. DOI: 10.1007/s00330-019-06347-w. [28] WANG M, FU F, ZHENG B, et al. Development of an AI system for accurately diagnose hepatocellular carcinoma from computed tomography imaging data[J]. Br J Cancer, 2021, 125(8): 1111-1121. DOI: 10.1038/s41416-021-01511-w. [29] OESTMANN PM, WANG CJ, SAVIC LJ, et al. Deep learning-assisted differentiation of pathologically proven atypical and typical hepatocellular carcinoma (HCC) versus non-HCC on contrast-enhanced MRI of the liver[J]. Eur Radiol, 2021, 31(7): 4981-4990. DOI: 10.1007/s00330-020-07559-1. [30] VIVANTI R, JOSKOWICZ L, LEV-COHAIN N, et al. Patient-specific and global convolutional neural networks for robust automatic liver tumor delineation in follow-up CT studies[J]. Med Biol Eng Comput, 2018, 56(9): 1699-1713. DOI: 10.1007/s11517-018-1803-6. [31] SHI W, KUANG S, CAO S, et al. Deep learning assisted differentiation of hepatocellular carcinoma from focal liver lesions: Choice of four-phase and three-phase CT imaging protocol[J]. Abdom Radiol (NY), 2020, 45(9): 2688-2697. DOI: 10.1007/s00261-020-02485-8. [32] HAMM CA, WANG CJ, SAVIC LJ, et al. Deep learning for liver tumor diagnosis part I: Development of a convolutional neural network classifier for multi-phasic MRI[J]. Eur Radiol, 2019, 29(7): 3338-3347. DOI: 10.1007/s00330-019-06205-9. [33] WU Y, WHITE GM, CORNELIUS T, et al. Deep learning LI-RADS grading system based on contrast enhanced multiphase MRI for differentiation between LR-3 and LR-4/LR-5 liver tumors[J]. Ann Transl Med, 2020, 8(11): 701. DOI: 10.21037/atm.2019.12.151. [34] MAO B, ZHANG L, NING P, et al. Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning-based radiomics[J]. Eur Radiol, 2020, 30(12): 6924-6932. DOI: 10.1007/s00330-020-07056-5. [35] WU M, TAN H, GAO F, et al. Predicting the grade of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature[J]. Eur Radiol, 2019, 29(6): 2802-2811. DOI: 10.1007/s00330-018-5787-2. [36] CHEN Y, XIA Y, TOLAT PP, et al. Comparison of conventional gadoxetate disodium-enhanced MRI features and radiomics signatures with machine learning for diagnosing microvascular invasion[J]. AJR Am J Roentgenol, 2021, 216(6): 1510-1520. DOI: 10.2214/AJR.20.23255. [37] BORHANI AA, CATANIA R, VELICHKO YS, et al. Radiomics of hepatocellular carcinoma: Promising roles in patient selection, prediction, and assessment of treatment response[J]. Abdom Radiol (NY), 2021, 46(8): 3674-3685. DOI: 10.1007/s00261-021-03085-w. [38] LAI Q, VITALE A, HALAZUN K, et al. Identification of an upper limit of tumor burden for downstaging in candidates with hepatocellular cancer waiting for liver transplantation: A west-east collaborative effort[J]. Cancers (Basel), 2020, 12(2): 452. DOI: 10.3390/cancers12020452. [39] HUANG S, YANG J, FONG S, et al. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges[J]. Cancer Lett, 2020, 471: 61-71. DOI: 10.1016/j.canlet.2019.12.007. [40] LAI Q, SPOLETINI G, MENNINI G, et al. Prognostic role of artificial intelligence among patients with hepatocellular cancer: A systematic review[J]. World J Gastroenterol, 2020, 26(42): 6679-6688. DOI: 10.3748/wjg.v26.i42.6679. [41] GUO D, GU D, WANG H, et al. Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation[J]. Eur J Radiol, 2019, 117: 33-40. DOI: 10.1016/j.ejrad.2019.05.010. [42] JI GW, ZHU FP, XU Q, et al. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study[J]. EBioMedicine, 2019, 50: 156-165. DOI: 10.1016/j.ebiom.2019.10.057. [43] ZHANG Z, CHEN J, JIANG H, et al. Gadoxetic acid-enhanced MRI radiomics signature: Prediction of clinical outcome in hepatocellular carcinoma after surgical resection[J]. Ann Transl Med, 2020, 8(14): 870. DOI: 10.21037/atm-20-3041. [44] YUAN C, WANG Z, GU D, et al. Prediction early recurrence of hepatocellular carcinoma eligible for curative ablation using a Radiomics nomogram[J]. Cancer Imaging, 2019, 19(1): 21. DOI: 10.1186/s40644-019-0207-7. [45] SHEN JX, ZHOU Q, CHEN ZH, et al. Longitudinal radiomics algorithm of posttreatment computed tomography images for early detecting recurrence of hepatocellular carcinoma after resection or ablation[J]. Transl Oncol, 2021, 14(1): 100866. DOI: 10.1016/j.tranon.2020.100866. [46] ABAJIAN A, MURALI N, SAVIC LJ, et al. Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning-an artificial intelligence concept[J]. J Vasc Interv Radiol, 2018, 29(6): 850-857. e1. DOI: 10.1016/j.jvir.2018.01.769. [47] PENG J, KANG S, NING Z, et al. Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging[J]. Eur Radiol, 2020, 30(1): 413-424. DOI: 10.1007/s00330-019-06318-1. [48] ZHANG L, XIA W, YAN ZP, et al. Deep learning predicts overall survival of patients with unresectable hepatocellular carcinoma treated by transarterial chemoembolization plus sorafenib[J]. Front Oncol, 2020, 10: 593292. DOI: 10.3389/fonc.2020.593292. 期刊类型引用(13)
1. 路燕,陈明月,郑秀良,雷宇. 185例药物性肝损伤患者的临床特征分析. 安徽医学. 2022(03): 308-313 . 百度学术
2. 赵临潇,左博云,李静亚,于东升. 妊娠期肝内胆汁淤积症孕妇胎盘ABCB4基因表达与妊娠结局的关系. 海南医学. 2022(11): 1424-1427 . 百度学术
3. 张慧芳,王高莹,邹萍,王晶,董蕊锐,张婷,孟西娜. 妊娠期肝内胆汁淤积症血清甘胆酸水平与妊娠结局的关系. 中国临床研究. 2022(06): 793-796 . 百度学术
4. 林洪萍,黄晋萍,黄淑兰,卢君,黎春,杨佳柳. 中药外洗在妊娠期肝内胆汁淤积症诱发皮肤瘙痒患者中的应用. 中国医学创新. 2022(19): 96-99 . 百度学术
5. 李媛,郑泽玉,田阗,邬洪明,田嫣然,李茂. 妊娠期肝内胆汁淤积症的危险因素分析. 临床和实验医学杂志. 2021(02): 200-203 . 百度学术
6. 段兴平,王燕,黄常友,郑会贤,罗一,覃正文,任郁. 妊娠期肝病的临床特征及研究进展. 临床肝胆病杂志. 2020(06): 1407-1411 . 本站查看
7. 陈韵洁,张晨,谭娟. 脂肪酸转运体蛋白FATP4、CD36、FABP1在妊娠期肝内胆汁淤积胎盘中表达研究. 中外医疗. 2020(15): 30-31+46 . 百度学术
8. 唐照青,俞海珍. 联合监护评估对妊娠期无症状高胆汁酸血症孕妇围生儿预后的价值. 中国现代药物应用. 2020(18): 19-22 . 百度学术
9. 汪学耀,张涛,荆成宝. 血清总胆汁酸与甘胆酸水平诊断妊娠期肝内胆汁淤积症能力的Meta分析. 现代检验医学杂志. 2020(05): 73-76 . 百度学术
10. 吕玉清. 我院中药处方中妊娠患者疾病及用药情况分析研究. 海峡药学. 2020(10): 176-178 . 百度学术
11. 刘燕,王丽娟,李盈盈. 综合护理在妊娠期肝内胆汁淤积症患者中的临床效果分析. 妇产与遗传(电子版). 2020(03): 40-44 . 百度学术
12. 张燕,王伟红. 妊娠期肝内胆汁淤积症孕妇血清总胆汁酸、谷草转氨酶及Th17/Treg平衡水平及临床意义. 中国计划生育学杂志. 2020(12): 2093-2097 . 百度学术
13. 马艳辉,邵久玲,王双梅. 低分子肝素治疗妊娠期肝内胆汁淤积症的疗效及对肝胆指标、母婴结局的影响. 哈尔滨医药. 2020(05): 438-440 . 百度学术
其他类型引用(3)
-