中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钠牛磺胆酸共转运多肽缺陷病临床特征及SLC10A1基因突变分析

杨峰霞 曾凡森 谭丽梅 龚余 刘玲丽 徐翼

杨峰霞, 曾凡森, 谭丽梅, 等. 钠牛磺胆酸共转运多肽缺陷病临床特征及SLC10A1基因突变分析[J]. 临床肝胆病杂志, 2022, 38(3): 613-616. DOI: 10.3969/j.issn.1001-5256.2022.03.022.
引用本文: 杨峰霞, 曾凡森, 谭丽梅, 等. 钠牛磺胆酸共转运多肽缺陷病临床特征及SLC10A1基因突变分析[J]. 临床肝胆病杂志, 2022, 38(3): 613-616. DOI: 10.3969/j.issn.1001-5256.2022.03.022.
YANG FX, ZENG FS, TAN LM, et al. Clinical features of sodium taurocholate cotransporting polypeptide deficiency and an analysis of SLC10A1 gene mutation[J]. J Clin Hepatol, 2022, 38(3): 613-616. DOI: 10.3969/j.issn.1001-5256.2022.03.022.
Citation: YANG FX, ZENG FS, TAN LM, et al. Clinical features of sodium taurocholate cotransporting polypeptide deficiency and an analysis of SLC10A1 gene mutation[J]. J Clin Hepatol, 2022, 38(3): 613-616. DOI: 10.3969/j.issn.1001-5256.2022.03.022.

钠牛磺胆酸共转运多肽缺陷病临床特征及SLC10A1基因突变分析

DOI: 10.3969/j.issn.1001-5256.2022.03.022
基金项目: 

广州市卫生健康科技项目 (20201A011036)

伦理学声明:本研究方案于2019年8月22日经由广州市妇女儿童医疗中心伦理委员会批准,批号:穗妇儿2019-32400,所有检查均取得患儿家属知情同意。
利益冲突声明:本研究不存在研究者、伦理委员会成员、受试者监护人以及与公开研究成果有关的利益冲突。
作者贡献声明:杨峰霞负责课题设计,资料分析,撰写论文;曾凡森、谭丽梅、龚余、刘玲丽参与收集数据,修改论文;徐翼负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    徐翼,E-mail: xuyi70@163.com

Clinical features of sodium taurocholate cotransporting polypeptide deficiency and an analysis of SLC10A1 gene mutation

Research funding: 

Guangzhou Health Science and Technology Project (20201A011036)

More Information
    Corresponding author: XU Yi, xuyi70@163.com(ORCID: 0000-0001-8971-9334)
  • 摘要:   目的  总结钠牛磺胆酸共转运多肽(NTCP)缺陷病的临床和基因突变特征。  方法  选取2020年6月—2021年6月于广州市妇女儿童医疗中心经基因检测确诊的10例NTCP缺陷病患儿(年龄 < 18岁),分析一般资料(性别、年龄、身高、体质量、家族史和既往病史)、临床表现、病情转归、实验室检查(血常规、肝功能、嗜肝病毒、自身免疫性肝炎筛查)及基因突变检测结果。  结果  10例患儿生长发育均正常,其中男8例,女2例;确诊年龄3~37个月。首次就诊病因包括新生儿黄疸延长(5/10,50%)、转氨酶升高(2/10,20%)、体检(2/10,20%)和肺炎(1/10,10%)。所有患儿确诊时血清TBA水平均明显升高;ALT、AST水平升高2例;TBil水平升高1例,且以DBil水平升高为主(DBil/TBil>50%)。经第二代基因测序,10例患儿均为SLC10A1基因纯合突变:c.800C>T(p.Ser267Phe,chr14∶70245193)。  结论  尽管NTCP缺乏症往往无明显症状,但部分患儿早期可表现为婴儿胆汁淤积症,对于显著而持续的高胆汁酸血症,且血清总TBA水平与其他肝功能指标的变化趋势不一致时,应考虑NTCP缺陷病可能。

     

  • 钠牛磺胆酸共转运多肽(sodium taurocholate cotrans-porting polypeptide,NTCP)缺陷病是由于溶质转运蛋白家族10成员1(solute carrier family 10 member 1,SLC10A1)基因突变引起的一种遗传性胆汁酸代谢病。NTCP是一种表达于肝细胞基侧膜的转运蛋白,由定位于染色体14q24.2的基因SLC10A1编码,其主要功能是以钠依赖方式,将结合型胆汁酸从血浆摄取入肝细胞,在胆汁酸肠肝循环中发挥重要作用。因此,NTCP的缺乏将导致血液循环中胆汁酸水平升高[1]。胆汁酸是胆汁的重要成分,主要存在于肠肝循环中。大约95%的胆汁酸被肝脏重新吸收并循环利用[2]。在正常生理条件下,胆汁酸维持恒定的内部环境,并具有抗炎特性。然而,胆汁淤积会导致肝脏炎症和损伤。因此,维持血液循环和肝脏中相对较低的胆汁酸水平是非常重要的[3]。此外,某些甾体激素、甲状腺激素、药物以及药物与胆汁酸的结合体也是NTCP摄取的底物[4]。近年研究[5-6]发现,NTCP还是HBV和HDV进入肝细胞的受体。荷兰学者Vaz等[7]于2015年报道了全球首例NTCP缺陷病。截至目前,医学界对NTCP缺陷病的认识仍主要基于散发性的病例报道。作为一种新的罕见的遗传性胆汁酸代谢病,NTCP缺陷病的临床表型、生化特征和SLC10A1基因型特征尚需进一步研究总结,以促进临床早期识别,避免不必要的诊疗干预和人群焦虑。本研究基于本中心经基因检测确诊的10例NTCP缺陷病患者,对该病临床表现、生化特点及基因突变进行分析总结。

    选取2020年6月—2021年6月于本中心因持续性高胆汁酸血症就诊且基因检测具有SLC10A1基因纯合或复合杂合突变的10例18岁以下患儿为研究对象。排除感染性、结构性和免疫性胆汁淤积患儿。

    收集10例患儿的一般资料(性别、年龄、身高、体质量、家族史和既往病史)、临床表现、病情转归、实验室检查(血常规、肝功能、嗜肝病毒、自身免疫性肝炎筛查)及基因突变检测结果,进行回顾性分析总结。基因检测及家系验证流程:家属签署知情同意书后,抽取患儿及其父母外周静脉血2.0 mL置于EDTA抗凝管中,混匀后即送至武汉康圣环球有限公司进行基因测序。采用安捷伦外显子芯片捕获+高通量测序法对先证者进行60个与胆汁淤积性黄疸相关基因的检测,检测到突变基因后再用sanger测序法对患儿及其父母基因突变进行验证,将测序发现的突变在人类基因突变数据库(GMD,www.hgmd.org)、人类孟德尔遗传数据库(OMIM,www.ncbi.nlm.nih.gov/omim)对基因对应的疾病及遗传方式、HGMDpro数据库收录情况进行比对,按照美国医学遗传学和基因组学会(ACMG)遗传变异分类标准指南[8]对新突变分级。

    10例患儿均来自不同的家庭,按就诊时间排序编号P1~P10,其中男8例,女2例,男女比例为4∶1。身高/体质量均在同龄同性别儿童的25%~75%之间(参照2009年中国0~3岁和2~18岁儿童身高/体质量百分位曲线);确诊年龄3~37个月,中位年龄11.5个月;P2患儿35周早产,P6患儿足月出生,但出生体质量 < 2.5 kg(足月小样儿),余患儿出生史无异常。P4患儿母亲孕期合并妊娠期肝内胆汁淤积症。首次就诊病因包括新生儿黄疸延长(5/10,50%)、转氨酶水平升高(2/10,20%)、体检(2/10,20%)和肺炎(1/10,10%)。肝脾肿大患儿1例(P6),肝右肋下3 cm,脾肋下3 cm,质地中等。所有患儿均无皮肤瘙痒及黄瘤(表 1)。

    表  1  确诊时患儿主要临床表现、实验室检查结果
    病例 性别 发病/确诊年龄(月) 首次就诊原因 ALT (U/L) AST (U/L) TBil (μmol/L) DBil (μmol/L) IBil (μmol/L) TBA (μmol/L) Alb (g/L) GGT (U/L)
    P1 -/10 体检 26 36 6.6 1.0 5.6 108.3 41.1 9
    P2 2/37 转氨酶高 15 36 5.7 1.8 3.9 107.8 45.4 11
    P3 1/4 黄疸 38 42 13.7 6.5 7.2 230.0 43.1 42
    P4 2/13 肺炎 32 43 4.4 1.0 3.4 69.3 48.4 11
    P5 1/23 黄疸 24 36 8.5 1.5 7.0 44.4 45.2 8
    P6 1/3 黄疸 441 355 112.5 82.3 30.2 221.6 45.6 103
    P7 1/4 黄疸 34 34 3.8 0.7 3.1 97.1 46.7 34
    P8 1/5 黄疸 40 67 9.9 3.6 6.3 316.4 43.3 22
    P9 3/13 转氨酶升高 53 58 6.0 1.5 4.5 245.6 45.2 12
    P10 -/13 体检 27 34 11.4 3.2 8.2 107.2 44.3 35
    注:ALT正常值范围7~40 U/L,AST正常值范围5~60 U/L,TBil正常值范围2~17 μmol/L,DBil正常值范围0~7 μmol/L,IBil正常值范围2~13.7 μmol/L,TBA正常值范围0.5~10 μmol/L,Alb正常值范围40~55 g/L,GGT正常值范围7~45 U/L。“-”表示发病时间不明确。
    下载: 导出CSV 
    | 显示表格

    所有患儿血清TBA水平均升高,平均水平(154.8±90.1 μmol/L);ALT、AST水平升高2例;TBil水平升高1例,且以DBil水平升高为主(DBil/TBil>50%);P6患儿住院期间检测巨细胞病毒抗体IgM弱阳性,血浆巨细胞病毒DNA 601拷贝/mL,脑干听觉诱发电位、胸部X线检查未见异常,病程中曾予更昔洛韦注射液抗病毒治疗2周,但疗效欠佳,TBil、DBil水平较治疗前无明显下降,由此推断因巨细胞病毒感染引起胆汁淤积的可能性较小;其他患儿HAV、HBV、HCV、HEV、EB病毒、巨细胞病毒、微小病毒B19、自身免疫性肝炎、梅毒、HIV检测及尿有机酸分析均未见异常(表 1)。

    经第二代基因测序,10例患儿均为SLC10A1基因纯合突变:c.800C>T(p.Ser267Phe,chr14∶70245193)。父亲均为杂合突变,P1、P4、P10患儿母亲为纯合突变。其中,P4患儿母亲妊娠期间有肝内胆汁淤积症,P1、P10患儿母亲无症状,但血TBA水平(18.4 μmol/L、21.6 μmol/L)稍高于正常值上限。其他胆汁淤积相关基因:P1、P8、P10患儿为UGT1AI杂合突变,P5患儿为UGT1A1纯合突变、ABCB4杂合突变,P6患儿为UGT1A1复合杂合突变,P7患儿为TJP2杂合突变(表 2)。

    表  2  10例患儿及其父母第二代基因检测结果
    病例 患儿碱基改变 父亲碱基改变 母亲碱基改变 氨基酸改变 HGMD报道 ACMG分级 备注
    P1 c.800C>T(纯合) c.800C>T(杂合) c.800C>T(纯合) p.Ser267phe DFP 致病 母亲无症状,血清TBA 18.4 μmol/L
    P2 c.800C>T(纯合) c.800C>T(杂合) c.800C>T(杂合) p.Ser267phe DFP 致病 35周早产
    P3 c.800C>T(纯合) c.800C>T(杂合) c.800C>T(杂合) p.Ser267phe DFP 致病
    P4 c.800C>T(纯合) c.800C>T(杂合) c.800C>T(纯合) p.Ser267phe DFP 致病 母亲孕期高TBA水平
    P5 c.800C>T(纯合) c.800C>T(杂合) c.800C>T(杂合) p.Ser267phe DFP 致病
    P6 c.800C>T(纯合) c.800C>T(杂合) c.800C>T(杂合) p.Ser267phe DFP 致病 足月小样儿
    P7 c.800C>T(纯合) c.800C>T(杂合) c.800C>T(杂合) p.Ser267phe DFP 致病
    P8 c.800C>T(纯合) c.800C>T(杂合) c.800C>T(杂合) p.Ser267phe DFP 致病 父亲确诊为肝豆状核变性
    P9 c.800C>T(纯合) c.800C>T(杂合) c.800C>T(杂合) p.Ser267phe DFP 致病
    P10 c.800C>T(纯合) c.800C>T(杂合) c.800C>T(纯合) p.Ser267phe DFP 致病 母亲无症状,血清TBA 21.6 μmol/L
    注:DFP,有功能证据的与疾病相关的多态性。
    下载: 导出CSV 
    | 显示表格

    NTCP缺陷病是近年来逐渐被认识的一种新的遗传性胆汁酸代谢病,属于常染色体隐性遗传病[9]。NTCP缺陷病是由于SLC10A1基因突变,影响NTCP从血浆中摄取胆汁酸盐的功能,导致胆汁酸在血液中大量堆积,形成显著而顽固的高胆汁酸血症。由于胆汁酸的合成、分泌、重吸收等均未受到直接影响,因此NTCP缺陷患者除了高胆汁酸血症,其他临床表现可不明显[1],这有别于引起胆汁酸水平增高的其他遗传代谢性疾病。本研究中10例NTCP缺陷病患儿生长发育均正常,诊断时年龄最小3个月,最大37个月。受影响的男孩多于女孩,第1次就诊的原因不尽相同,最常见的是黄疸。除高胆汁酸血症外,最常见的生化特征为ALT、AST、TBil水平升高(年幼婴儿多见),随着治疗及年龄增长,转氨酶和胆红素指标逐渐恢复正常,但无法纠正高胆汁酸血症,与其他肝功能指标变化趋势不一致,这是NTCP缺陷病的特征性表现。NTCP缺陷病早期可能表现为短暂的婴儿胆汁淤积症,使临床诊断时错误考虑为胆道闭锁或其他胆管异常,导致过渡干预,如内镜逆行胰胆管造影和胆管探查;后期则仅表现为血胆汁酸水平升高,无黄疸、生长发育迟缓、黄瘤、瘙痒等临床表现,易漏诊。因此,常规将TBA纳入肝功能检查可减少漏诊率。

    笔者团队检索国内外文献数据库2015年1月—2021年1月共析出13项研究[7, 10-21],涉及74例NTCP缺陷病患儿,除1例来自阿富汗,其他均来自我国。其中,4例存在生长、发育迟缓;首次就诊的原因包括高胆红素血症、新生儿黄疸延长、新生儿短暂胆汁淤积及体检、志愿者招募、肺炎、早产等非肝脏相关疾病;突变位点包括c.800C>T、c.776G>A、c.595A>C、c.755G>a、c.615-618del、c.682-683del、c.263T>c。在73例我国患儿中,c.800C>T纯合突变的携带率为90%(66/73),可视为我国NTCP缺陷病患儿的热点突变。本研究中10例患儿均为c.800C>T (p.Ser267Phe)纯合突变,ACMG分级均为致病,其中P1、P4、P10患儿母亲也为c.800C>T纯合突变,临床表现为轻度高胆汁酸血症及妊娠胆汁淤积症。6例患儿的突变与其他影响胆红素代谢的基因突变(包括UGT1A1、ABCB4、TJP2)合并。根据遗传方式,P5、P6患儿(UGT1A1纯合/复合杂合突变)符合常染色体隐性遗传规律,但与患儿临床表现不相符合,UGT1A1基因突变临床表现为高间接胆红素血症;ABCB4、TJP2为单杂合突变,均与进行性家族性胆汁淤积症相关,但是否会影响胆红素的代谢尚需进一步开展分子水平的研究。

    NTCP缺陷病尚无特异性治疗手段,对症支持治疗是主要的管理手段,一般不需要创伤性检查或治疗。患儿短期临床结局均良好,迄今未见有因NTCP缺陷病致死亡或肝硬化等严重预后的报道[22]。然而,高浓度血浆TBA水平对人体健康有何影响,仍需长期随访观察。

    综上所述,儿童NTCP患者就诊的最常见原因是黄疸,也可发现于体检或其他非肝脏疾病检查中。黄疸多是暂时的,消退后可无明显临床表现,显著而持续性的高胆汁酸血症提示本病可能。SLC10A1基因分析发现双等位基因致病性变异是可靠的确诊依据,我国的热点突变是c.800C>T (p.Ser267Phe)。因此,对伴有显著而持续性高胆汁酸血症的新生儿高胆红素血症、婴儿早期胆汁淤积症和妊娠胆汁淤积症患者,均有必要行SLC10A1基因分析,以排除NTCP缺陷病可能。

  • 表  1  确诊时患儿主要临床表现、实验室检查结果

    病例 性别 发病/确诊年龄(月) 首次就诊原因 ALT (U/L) AST (U/L) TBil (μmol/L) DBil (μmol/L) IBil (μmol/L) TBA (μmol/L) Alb (g/L) GGT (U/L)
    P1 -/10 体检 26 36 6.6 1.0 5.6 108.3 41.1 9
    P2 2/37 转氨酶高 15 36 5.7 1.8 3.9 107.8 45.4 11
    P3 1/4 黄疸 38 42 13.7 6.5 7.2 230.0 43.1 42
    P4 2/13 肺炎 32 43 4.4 1.0 3.4 69.3 48.4 11
    P5 1/23 黄疸 24 36 8.5 1.5 7.0 44.4 45.2 8
    P6 1/3 黄疸 441 355 112.5 82.3 30.2 221.6 45.6 103
    P7 1/4 黄疸 34 34 3.8 0.7 3.1 97.1 46.7 34
    P8 1/5 黄疸 40 67 9.9 3.6 6.3 316.4 43.3 22
    P9 3/13 转氨酶升高 53 58 6.0 1.5 4.5 245.6 45.2 12
    P10 -/13 体检 27 34 11.4 3.2 8.2 107.2 44.3 35
    注:ALT正常值范围7~40 U/L,AST正常值范围5~60 U/L,TBil正常值范围2~17 μmol/L,DBil正常值范围0~7 μmol/L,IBil正常值范围2~13.7 μmol/L,TBA正常值范围0.5~10 μmol/L,Alb正常值范围40~55 g/L,GGT正常值范围7~45 U/L。“-”表示发病时间不明确。
    下载: 导出CSV

    表  2  10例患儿及其父母第二代基因检测结果

    病例 患儿碱基改变 父亲碱基改变 母亲碱基改变 氨基酸改变 HGMD报道 ACMG分级 备注
    P1 c.800C>T(纯合) c.800C>T(杂合) c.800C>T(纯合) p.Ser267phe DFP 致病 母亲无症状,血清TBA 18.4 μmol/L
    P2 c.800C>T(纯合) c.800C>T(杂合) c.800C>T(杂合) p.Ser267phe DFP 致病 35周早产
    P3 c.800C>T(纯合) c.800C>T(杂合) c.800C>T(杂合) p.Ser267phe DFP 致病
    P4 c.800C>T(纯合) c.800C>T(杂合) c.800C>T(纯合) p.Ser267phe DFP 致病 母亲孕期高TBA水平
    P5 c.800C>T(纯合) c.800C>T(杂合) c.800C>T(杂合) p.Ser267phe DFP 致病
    P6 c.800C>T(纯合) c.800C>T(杂合) c.800C>T(杂合) p.Ser267phe DFP 致病 足月小样儿
    P7 c.800C>T(纯合) c.800C>T(杂合) c.800C>T(杂合) p.Ser267phe DFP 致病
    P8 c.800C>T(纯合) c.800C>T(杂合) c.800C>T(杂合) p.Ser267phe DFP 致病 父亲确诊为肝豆状核变性
    P9 c.800C>T(纯合) c.800C>T(杂合) c.800C>T(杂合) p.Ser267phe DFP 致病
    P10 c.800C>T(纯合) c.800C>T(杂合) c.800C>T(纯合) p.Ser267phe DFP 致病 母亲无症状,血清TBA 21.6 μmol/L
    注:DFP,有功能证据的与疾病相关的多态性。
    下载: 导出CSV
  • [1] KARPEN SJ, DAWSON PA. Not all (bile acids) who wander are lost: The first report of a patient with an isolated NTCP defect[J]. Hepatology, 2015, 61(1): 24-27. DOI: 10.1002/hep.27294.
    [2] ŠARENAC TM, MIKOV M. Bile acid synthesis: From nature to the chemical modification and synthesis and their applications as drugs and nutrients[J]. Front Pharmacol, 2018, 9: 939. DOI: 10.3389/fphar.2018.00939.
    [3] CHIANG J. Bile acid metabolism and signaling in liver disease and therapy[J]. Liver Res, 2017, 1(1): 3-9. DOI: 10.1016/j.livres.2017.05.001.
    [4] ANWER MS, STIEGER B. Sodium-dependent bile salt transporters of the SLC10A transporter family: More than solute transporters[J]. Pflugers Arch, 2014, 466(1): 77-89. DOI: 10.1007/s00424-013-1367-0.
    [5] APPELMAN MD, CHAKRABORTY A, PROTZER U, et al. N-glycosylation of the Na+-taurocholate cotransporting polypeptide (NTCP) determines its trafficking and stability and is required for hepatitis B virus infection[J]. PLoS One, 2017, 12(1): e0170419. DOI: 10.1371/journal.pone.0170419.
    [6] YU Y, LI S, LIANG W. Bona fide receptor for hepatitis B and D viral infections: Mechanism, research models and molecular drug targets[J]. Emerg Microbes Infect, 2018, 7(1): 134. DOI: 10.1038/s41426-018-0137-7.
    [7] VAZ FM, PAULUSMA CC, HUIDEKOPER H, et al. Sodium taurocholate cotransporting polypeptide (SLC10A1) deficiency: Conjugated hypercholanemia without a clear clinical phenotype[J]. Hepatology, 2015, 61(1): 260-267. DOI: 10.1002/hep.27240.
    [8] RICHARDS S, AZIZ N, BALE S, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17: 405-423. DOI: 10.1038/gim.2015.30.
    [9] SARGIACOMO C, EL-KEHDY H, POURCHER G, et al. Age-dependent glycosylation of the sodium taurocholate cotransporter polypeptide: From fetal to adult human livers[J]. Hepatol Commun, 2018, 2(6): 693-702. DOI: 10.1002/hep4.1174.
    [10] DENG M, MAO M, GUO L, et al. Clinical and molecular study of a pediatric patient with sodium taurocholate cotransporting polypeptide deficiency[J]. Exp Ther Med, 2016, 12(5): 3294-3300. DOI: 10.3892/etm.2016.3752.
    [11] LIU R, CHEN C, XIA X, et al. Homozygous p. Ser267Phe in SLC10A1 is associated with a new type of hypercholanemia and implications for personalized medicine[J]. Sci Rep, 2017, 7(1): 9214. DOI: 10.1038/s41598-017-07012-2.
    [12] QIU JW, DENG M, CHENG Y, et al. Sodium taurocholate cotransporting polypeptide (NTCP) deficiency: Identification of a novel SLC10A1 mutation in two unrelated infants presenting with neonatal indirect hyperbilirubinemia and remarkable hypercholanemia[J]. Oncotarget, 2017, 8(63): 106598-106607. DOI: 10.18632/oncotarget.22503.
    [13] SONG YZ, DENG M. Sodium taurocholate cotransporting polypeptide deficiency manifesting as cholestatic jaundice in early infancy: A complicated case study[J]. Chin J Contemp Pediatr, 2017, 19(3): 350-354. DOI: 10.7499/j.issn.1008-8830.2017.03.020.

    宋元宗, 邓梅. 疑难病研究——钠牛磺胆酸共转运多肽缺陷病表现为婴儿早期胆汁淤积性黄疸[J]. 中国当代儿科杂志, 2017, 19(3): 350-354. DOI: 10.7499/j.issn.1008-8830.2017.03.020.
    [14] LI H, QIU JW, LIN GZ, et al. Clinical and genetic analysis of a pediatric patient with sodium taurocholate cotransporting polypeptide deficiency[J]. Chin J Contemp Pediatr, 2018, 20(4): 279-284. DOI: 10.7499/j.issn.1008-8830.2018.04.005.

    李华, 邱建武, 林桂枝, 等. 一例钠牛磺胆酸共转运多肽缺陷病患儿临床和遗传学分析[J]. 中国当代儿科杂志, 2018, 20(4): 279-284. DOI: 10.7499/j.issn.1008-8830.2018.04.005.
    [15] TAN HJ, DENG M, QIU JW, et al. Monozygotic twins suffering from sodium taurocholate cotransporting polypeptide deficiency: A case report[J]. Front Pediatr, 2018, 6: 354. DOI: 10.3389/fped.2018.00354.
    [16] LI H, DENG M, GUO L, et al. Clinical and molecular characterization of four patients with NTCP deficiency from two unrelated families harboring the novel SLC10A1 variant c. 595A > C (p. Ser199Arg)[J]. Mol Med Rep, 2019, 20(6): 4915-4924. DOI: 10.3892/mmr.2019.10763.
    [17] LIN H, QIU JW, RAUF YM, et al. Sodium taurocholate cotransporting polypeptide (NTCP) deficiency hidden behind citrin deficiency in early infancy: A report of three cases[J]. Front Genet, 2019, 10: 1108. DOI: 10.3389/fgene.2019.01108.
    [18] DONG C, ZHANG BP, WANG H, et al. Clinical and histopathologic features of sodium taurocholate cotransporting polypeptide deficiency in pediatric patients[J]. Medicine (Baltimore), 2019, 98(39): e17305. DOI: 10.1097/MD.0000000000017305.
    [19] YAN YY, WANG MX, GONG JY, et al. Abnormal bilirubin metabolism in patients with sodium taurocholate cotransporting polypeptide deficiency[J]. J Pediatr Gastroenterol Nutr, 2020, 71(5): e138-e141. DOI: 10.1097/MPG.0000000000002862.
    [20] ZOU TT, ZHU Y, WAN CM, et al. Clinical features of sodium-taurocholate cotransporting polypeptide deficiency in pediatric patients: Case series and literature review[J]. Transl Pediatr, 2021, 10(4): 1045-1054. DOI: 10.21037/tp-20-360.
    [21] SUN WF, YU F. Clinical analysis of two pediatric patients with sodium taurocholate cotransporting polypeptide deficiency[J]. China Med Herald, 2020, 17(17): 185-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202017046.htm

    孙文君, 于飞. 2例钠牛磺胆酸共转运多肽缺陷病患儿临床分析[J]. 中国医药导报, 2020, 17(17): 185-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202017046.htm
    [22] SONG YZ. Research advances in the pathogenesis, clinical manifestations, and diagnosis/treatment of sodium-taurocholate cotransporting polypeptide deficiency[J]. J Clin Hepatol, 2019, 35(8): 1690-1692. DOI: 10.3969/j.issn.1001-5256.2019.08.007.

    宋元宗. 钠牛磺胆酸共转运多肽缺陷病的发病机制、临床表现及诊疗进展[J]. 临床肝胆病杂志, 2019, 35(8): 1690-1692. DOI: 10.3969/j.issn.1001-5256.2019.08.007.
  • 期刊类型引用(3)

    1. 黄芳利,邓寅业,赖武超,吴丹,谭文海,莫海浦,代艳. 14例钠牛磺胆酸共转运多肽缺陷病患儿的临床特征及基因分析. 中国临床新医学. 2025(03): 263-267 . 百度学术
    2. 李桂仙,陈艳娟,张旖航,张学敏,代怡琳,马瑞雪,田云粉. 新生儿钠牛磺胆酸共转运多肽缺陷病合并先天性甲状腺功能减退症1例. 中华新生儿科杂志(中英文). 2024(07): 433-434 . 百度学术
    3. 孙雁楠,朱莉. 钠-牛磺胆酸共转运多肽缺陷患儿的肝功能及基因特点. 贵州医科大学学报. 2022(12): 1482-1488 . 百度学术

    其他类型引用(2)

  • 加载中
表(2)
计量
  • 文章访问数:  1398
  • HTML全文浏览量:  283
  • PDF下载量:  86
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-08-17
  • 录用日期:  2021-09-20
  • 出版日期:  2022-03-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

/

返回文章
返回