中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MAPK信号通路——肝棘球蚴病治疗新靶点

董琳琳 芦永良 鄂维建 张翔 赵玲莉

引用本文:
Citation:

MAPK信号通路——肝棘球蚴病治疗新靶点

DOI: 10.3969/j.issn.1001-5256.2022.03.045
基金项目: 

青海省科技基础研究计划项目 (2018-ZJ-757)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:董琳琳负责课题设计,资料分析,撰写论文;芦永良、鄂维建、张翔参与收集资料,修改论文;赵玲莉负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    赵玲莉,zhaolingli640521@163.com

The MAPK signaling pathway: A new target for the treatment of hepatic echinococcosis

Research funding: 

Qinghai Science And Technology Basic Research Program (2018-ZJ-757)

More Information
  • 摘要: MAPK信号通路可介导多种细胞因子参与炎症、癌症、免疫紊乱和神经退行性疾病等过程,其在肝棘球蚴病发生发展过程中也发挥重要作用。本文回顾了MAPK信号通路的结构及调节过程,重点阐述了肝棘球蚴病中MAPK信号通路的作用,即MAPK信号通路在肝棘球蚴病中存在虫体与宿主的双重激活,参与了疾病的发生、发展过程,并对其治疗产生影响,以MAPK信号通路为靶点的药物治疗有望成为肝棘球蚴病治疗新的策略。

     

  • 图  1  MAPK信号通路示意图

    表  1  目前已在棘球蚴中鉴定的相关MAPK基因、蛋白质及其功能

    棘球蚴类别 基因 蛋白质 功能 参考文献
    多房棘球蚴 EmRas EmRas 小GTP家族;Ras家族 [25]
    EmRal EmRal 小GTP家族;Ras家族 [34]
    EmRaf EmRaf MAPKKK,Raf家族 [25]
    EmMKK2 EmMKK2 MAPKK,MEK1/2家族 [27]
    EmMPK1 EmMPK1 MAPK,ERK家族 [26]
    EmMKK1 EmMKK1 MAPKK,MEK3/6家族 [27]
    EmMPK2 EmMPK2 MAPK,P38家族 [28]
    EmMPK3 EmMPK3 MAPK,JUK家族 [35]
    细粒棘球蚴 EgRas EgRas 小GTP家族;Ras家族 [29]
    EgRal EgRal 小GTP家族;Ras家族 [30]
    EgRaf EgRaf MAPKKK,Raf家族 [32]
    EgMKK2 EgMKK2 MAPKK,MEK1/2家族 [32]
    EgERK1 EgERK1 MAPK,ERK家族 [31]
    EgMKK 1 EgMKK1 MAPKK,MEK3/6家族 [32]
    EgP38 EgP38 MAPK,P38家族 [33]
    下载: 导出CSV
  • [1] WEN H, VUITTON L, TUXUN T, et al. Echinococcosis: Advances in the 21st Century[J]. Clin Microbiol Rev, 2019, 32(2): e00075-18. DOI: 10.1128/CMR.00075-18.
    [2] SEN P, DEMIRDAL T, NEMLI SA. Evaluation of clinical, diagnostic and treatment aspects in hydatid disease: analysis of an 8-year experience[J]. Afr Health Sci, 2019, 19(3): 2431-2438. DOI: 10.4314/ahs.v19i3.17.
    [3] MOON H, RO SW. MAPK/ERK signaling pathway in hepatocellular carcinoma[J]. Cancers (Basel), 2021, 13(12): 3026. DOI: 10.3390/cancers13123026.
    [4] CHEN C, NELSON LJ, ÁVILA MA, et al. Mitogen-activated protein kinases (MAPKs) and cholangiocarcinoma: The missing link[J]. Cells, 2019, 8(10): 1172. DOI: 10.3390/cells8101172.
    [5] WANG GH, YU XH. Research progress on MAPK signaling pathway and pathogenesis of acute liver failure[J]. Chin Hepatol, 2016, 21(10): 880-883. DOI: 10.3969/j.issn.1008-1704.2016.10.023.

    王盖昊, 于晓辉. MAPK信号通路与急性肝衰竭发病机制的研究进展[J]. 肝脏, 2016, 21(10): 880-883. DOI: 10.3969/j.issn.1008-1704.2016.10.023.
    [6] CHUN JM, NHO KJ, KIM HS, et al. An ethyl acetate fraction derived from Houttuynia cordata extract inhibits the production of inflammatory markers by suppressing NF-кB and MAPK activation in lipopolysaccharide-stimulated RAW 264.7 macrophages[J]. BMC Complement Altern Med, 2014, 14: 234. DOI: 10.1186/1472-6882-14-234.
    [7] LIU TT, ZHANG SP, QIN XY, et al. Progress in studies on MAPK signal transduction pathway and nerve injury[J]. China Public Health, 2016, 32(2): 248-254. DOI: 10.11847/zgggws2016-32-02-32.

    刘婷婷, 张淑萍, 覃筱燕, 等. MAPK信号转导通路与神经损伤研究进展[J]. 中国公共卫生, 2016, 32(2): 248-254. DOI: 10.11847/zgggws2016-32-02-32.
    [8] GUI WF, XU S, DANG ZS, et al. In vitro and in vivo effect of MAPK signal transduction pathway inhibitors on echinococcus multilocularis[J]. J Parasitol, 2019, 105(1): 146-154. DOI: 10.1645/18-121
    [9] MA JM, GAO LL, ZHANG MW, et al. Role and mechanism of Lycium barbarum polysaccharide combined with aerobic exercise in improving nonalcoholic steatohepatitis in rats[J]. J Clin Hepatol, 2021, 37(6): 1348-1353. DOI: 10.3969/j.issn.1001-5256.2021.06.026.

    马佳敏, 高璐璐, 张梦伟, 等. 枸杞多糖联合有氧运动对非酒精性脂肪肝炎大鼠模型的改善作用及其机制研究[J]. 临床肝胆病杂志, 2021, 37(6): 1348-1353. DOI: 10.3969/j.issn.1001-5256.2021.06.026.
    [10] CIDAN WJ, LIN K, LU ZM, et al. The role of MAPK signaling pathway in development/progression and treatment of liver cancer[J]. J Clin Hepatol, 2016, 32(9): 1810-1813. DOI: 10.3969/j.issn.1001-5256.2016.09.040.

    次旦旺久, 林坤, 卢再鸣, 等. MAPK信号通路在肝癌发生发展及治疗中的作用[J]. 临床肝胆病杂志, 2016, 32(9): 1810-1813. DOI: 10.3969/j.issn.1001-5256.2016.09.040.
    [11] YIN JH, LIU CS, YU AP, et al. Pro-angiogenic activity of monocytic-type myeloid-derived suppressor cells from Balb/C mice infected with echinococcus granulosus and the regulatory role of miRNAs[J]. Cell Physiol Biochem, 2018, 51(3): 1207-1220. DOI: 10.1159/000495498.
    [12] REN B, FAN HN, WANG HJ, et al. Screening and a preliminary study of specific microRNA for hepatic alveolar echinococcosis[J]. J Clin Hepatol, 2021, 37(1): 135-141. DOI: 10.3969/j.issn.1001-5256.2021.01.027.

    任宾, 樊海宁, 王海久, 等. 肝泡型包虫病特异microRNA的筛选及初步研究[J]. 临床肝胆病杂志, 2021, 37(1): 135-141. DOI: 10.3969/j.issn.1001-5256.2021.01.027.
    [13] MACCHIAROLI N, MALDONADO LL, ZAROWIECKI M, et al. Genome-wide identification of microRNA targets in the neglected disease pathogens of the genus echinococcus[J]. Mol Biochem Parasitol, 2017, 214: 91-100. DOI: 10.1016/j.molbiopara.2017.04.001.
    [14] WANG CH, LYU HL, JIANG YF, et al. Advances in research on the MAPK signal transduction pathway of echinococcus[J]. Chin J Parasitol Parasitic Dis, 2013, 31 (1): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSB201301019.htm

    王成华, 吕海龙, 姜玉峰, 等. 棘球蚴MAPK信号转导通路的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2013, 31(1): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSB201301019.htm
    [15] ZHAO YM, GUI WF, ZHONG SG. Advances in parasitology research on the role of the MAPK signal transduction pathway[J]. Chin J Pathog Biol, 2017, 12(5): 480-483. DOI: 10.13350/j.cjpb.170524.

    赵玉敏, 桂炜峰, 种世桂. MAPK在寄生虫领域的研究进展[J]. 中国病原生物学杂志, 2017, 12(5): 480-483. DOI: 10.13350/j.cjpb.170524.
    [16] ZHAO Y, GUI W, NIU F, et al. The MAPK signaling pathways as a novel way in regulation and treatment of parasitic diseases[J]. Diseases, 2019, 7(1): 9. DOI: 10.3390/diseases7010009.
    [17] ZHOU L, HU FY, XU XY. Research progress of MAPK signal regulation pathway and its role in apoptosis[J]. Chin J Health Lab Technol, 2010, 20 (10): 2655-2657. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ201010122.htm

    周丽, 胡富勇, 徐新云. MAPK信号调节通路及其在细胞凋亡中的研究进展[J]. 中国卫生检验杂志, 2010, 20(10): 2655-2657. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ201010122.htm
    [18] CORRE I, PARIS F, HUOT J. The p38 pathway, a major pleiotropic cascade that transduces stress and metastatic signals in endothelial cells[J]. Oncotarget, 2017, 8(33): 55684-55714. DOI: 10.18632/oncotarget.18264.
    [19] REN B, FAN HN, DENG Y, et al. Effect of echinococcus multilocularis cyst fluid on the expression of five MAPK-pathway genes of rat hepatic stellate cells[J]. Chin J Parasitol Parasitic Dis, 2015, 33(2): 114-117, 121. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSB201502010.htm

    任宾, 樊海宁, 邓勇, 等. 泡球蚴囊液对大鼠肝星状细胞MAPK信号通路5个相关基因的影响[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(2): 114-117, 121. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSB201502010.htm
    [20] ZHANG J, JIANG N, PING J, et al. TGF-β1-induced autophagy activates hepatic stellate cells via the ERK and JNK signaling pathways[J]. Int J Mol Med, 2021, 47(1): 256-266. DOI: 10.3892/ijmm.2020.4778.
    [21] WU LK, LI YM, LIU YY, et al. Relationship between high glucose-induced hepatic stellate cell activation and the p38MAPK signaling pathway[J]. Inter J Epidemiol Infect Dis, 2015, 42(2): 91-94. DOI: 10.3760/cma.j.issn.16763-4149.2015.005.

    吴凌康, 厉有名, 刘英超, 等. 高糖诱导下肝星形细胞活化与p38MAPK信号通路的关系[J]. 国际流行病学传染病学杂志, 2015, 42(2): 91-94. DOI: 10.3760/cma.j.issn.16763-4149.2015.005.
    [22] ZHANG CS, LI CW, FAN JL, et al. Effect of echinococcus multilocularis protoscoleces on MAPK signaling pathways in cultured hepatic cells in vitro[J]. Chin J Pathog Biol, 2011, 6(8): 574-577, 608. DOI: 10.13350/j.cjpb.2011.08.015.

    张传山, 李朝旺, 范金亮, 等. 多房棘球绦虫原头蚴对体外培养宿主肝细胞MAPK信号通路影响的初步研究[J]. 中国病原生物学杂志, 2011, 6(8): 574-577, 608. DOI: 10.13350/j.cjpb.2011.08.015.
    [23] LIN K, ZHOU D, LI M, et al. Echinococcus granulosus cyst fluid suppresses inflammatory responses by inhibiting TRAF6 signalling in macrophages[J]. Parasitology, 2021, 148(7): 887-894. DOI: 10.1017/S0031182021000548.
    [24] LIU P, HOU J, WANG EQ, et al. Echinococcus granulosus cyst fluid regulates cytokine secretion through Toll-like receptor 2[J]. Chin J Clin Pharmacol, 2021, 37(1): 48-51. DOI: 10.13699/j.cnki.1001-6821.2021.01.012.

    刘坪, 侯隽, 王二强, 等. 细粒棘球蚴囊液通过Toll样受体2调节细胞因子分泌的研究[J]. 中国临床药理学杂志, 2021, 37(1): 48-51. DOI: 10.13699/j.cnki.1001-6821.2021.01.012.
    [25] SPILIOTIS M, TAPPE D, BRVCKNER S, et al. Molecular cloning and characterization of Ras- and Raf-homologues from the fox-tapeworm echinococcus multilocularis[J]. Mol Biochem Parasitol, 2005, 139(2): 225-237. DOI: 10.1016/j.molbiopara.2004.11.013.
    [26] SPILIOTIS M, KONRAD C, GELMEDIN V, et al. Characterisation of EmMPK1, an ERK-like MAP kinase from echinococcus multilocularis which is activated in response to human epidermal growth factor[J]. Int J Parasitol, 2006, 36(10-11): 1097-1112. DOI: 10.1016/j.ijpara.2006.05.008.
    [27] GELMEDIN V, SPILIOTIS M, BREHM K. Molecular characterisation of MEK1/2- and MKK3/6-like mitogen-activated protein kinase kinases (MAPKK) from the fox tapeworm echinococcus multilocularis[J]. Int J Parasitol, 2010, 40(5): 555-567. DOI: 10.1016/j.ijpara.2009.10.009.
    [28] GELMEDIN V, CABALLERO-GAMIZ R, BREHM K. Characterization and inhibition of a p38-like mitogen-activated protein kinase (MAPK) from Echinococcus multilocularis: Antiparasitic activities of p38 MAPK inhibitors[J]. Biochem Pharmacol, 2008, 76(9): 1068-1081. DOI: 10.1016/j.bcp.2008.08.020.
    [29] LYU GD, WANG JH, LU XM, et al. Molecular cloning and characterization of ras-homologues from different developing stages of echinococcus granulosus[J]. Chin J Parasitol Parasitic Dis, 2009, 27(1): 91-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSB200901030.htm

    吕国栋, 王俊华, 卢晓梅, 等. 细粒棘球绦虫原头蚴和成虫发育调控基因Ras GTPase的克隆及序列分析[J]. 中国寄生虫学与寄生虫病杂志, 2009, 27(1): 91-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSB200901030.htm
    [30] WANG HL, LYU GD, WANG JH, et al. Molecular cloning and characterization of Ral-homologues from Echinococcus granulosus in Xinjiang[J]. Chin J Pathog Biol, 2009, 4(8): 586-589. DOI: 10.13350/j.cjpb.2009.08.013.

    王红丽, 吕国栋, 王俊华, 等. 细粒棘球绦虫原头蚴发育调控基因Ral基因的克隆及序列分析[J]. 中国病原生物学杂志, 2009, 4(8): 586-589. DOI: 10.13350/j.cjpb.2009.08.013.
    [31] LYU GD, JI J, WANG JH, et al. Molecular cloning, sequencing and function of extracellular signal regulated kinase of Echinococcus granulosus[J]. Chin J Infect Dis, 2010, 28(7): 402-407. DOI: 10.3760/cma.j.issn.1000-6680.2010.07.006.

    吕国栋, 纪静, 王俊华, 等. 细粒棘球蚴细胞外信号调节激酶基因克隆、序列分析及功能的初步鉴定[J]. 中华传染病杂志, 2010, 28(7): 402-407. DOI: 10.3760/cma.j.issn.1000-6680.2010.07.006.
    [32] ZHANG C, LI J, AJI T, et al. Identification of functional MKK3/6 and MEK1/2 homologs from echinococcus granulosus and investigation of protoscolecidal activity of mitogen-activated protein kinase signaling pathway inhibitors in vitro and in vivo[J]. Antimicrob Agents Chemother, 2019, 63(1): e01043-18. DOI: 10.1128/AAC.01043-18.
    [33] LV G, LI J, ZHANG C, et al. Molecular cloning and characterization of a P38-like mitogen-activated protein kinase from echinococcus granulosus[J]. Korean J Parasitol, 2016, 54(6): 759-768. DOI: 10.3347/kjp.2016.54.6.759.
    [34] SPILIOTIS M, BREHM K. Echinococcus multilocularis: Identification and molecular characterization of a Ral-like small GTP-binding protein[J]. Exp Parasitol, 2004, 107(3-4): 163-172. DOI: 10.1016/j.exppara.2004.05.006.
    [35] REDDIEN PW, BERMANGE AL, MURFITT KJ, et al. Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria[J]. Dev Cell, 2005, 8(5): 635-649. DOI: 10.1016/j.devcel.2005.02.014.
    [36] CHENG Z, LIU F, LI X, et al. EGF-mediated EGFR/ERK signaling pathway promotes germinative cell proliferation in echinococcus multilocularis that contributes to larval growth and development[J]. PLoS Negl Trop Dis, 2017, 11(2): e0005418. DOI: 10.1371/journal.pntd.0005418.
    [37] CHENG Z, XU Z, TIAN H, et al. In vitro and in vivo efficacies of the EGFR/MEK/ERK signaling inhibitors in the treatment of alveolar echinococcosis[J]. Antimicrob Agents Chemother, 2020, 64(8): e00341-20. DOI: 10.1128/AAC.00341-20.
    [38] GUI WF. Study on the inhibitory effect of MAPK blocker on multilocular echinococcus in vivo and in vitro[D]. Guilin: Guilin Medical College, 2019.

    桂炜峰. MAPK阻滞剂在小鼠体内外对多房棘球蚴抑制效果的研究[D]. 桂林: 桂林医学院, 2019.
    [39] MA B. Echinococcus granulosus regulates the expression of antioxidant enzymes through mapk-nrf2 pathway[D]. Shihezi: Shihezi University, 2019.

    马斌. 细粒棘球蚴经MAPK-Nrf2通路调节抗氧化酶的表达[D]. 石河子: 石河子大学, 2019.
    [40] LI J, LI DW, WANG H, et al. The effect of the BMP inhibitor LDN-193189 on echinococcus multilocularis protoscoleces[J]. Chin J Pathog Biol, 2021, 16 (4): 429-432. DOI: 10.13350/j.cjpb.210411.

    李静, 李德伟, 王慧, 等. BMP抑制剂LDN-193189对多房棘球蚴原头节的作用研究[J]. 中国病原生物学杂志, 2021, 16(4): 429-432. DOI: 10.13350/j.cjpb.210411.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  1047
  • HTML全文浏览量:  144
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-04
  • 录用日期:  2021-09-30
  • 出版日期:  2022-03-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回