肠道菌群及其代谢物在胆囊胆固醇结石形成中的作用机制
DOI: 10.3969/j.issn.1001-5256.2022.04.042
利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:赵瀚东负责文献检索分析,撰写论文;高鹏参与修改论文;詹丽负责拟定写作思路,指导撰写文章并最后定稿。
The mechanism of intestinal flora and its metabolites in the formation of cholesterol gallstones
-
摘要: 胆囊结石是一种常见的多因素参与的消化系统疾病,80%以上为胆固醇结石,其发病率逐年增加。近年来研究发现肠道菌群参与胆囊胆固醇结石的发生发展。从肠道菌群及其代谢物对胆汁酸调控方面,阐述了肠道菌群及其代谢物在胆囊胆固醇结石发展中的作用,指出未来针对肠道菌群及其代谢产物的干预策略可能是预防和治疗胆囊胆固醇结石的新靶点。Abstract: Gallstone is a common digestive system disease involving multiple factors, more than 80% of which are cholesterol gallstones, and its incidence rate is increasing year by year. Recent studies have shown that intestinal flora is involved in the development and progression of cholesterol gallstones. This article elaborates on the role of intestinal flora and its metabolites in the progression of cholesterol gallstones from the aspect of regulation of bile acids by intestinal flora and its metabolites, and it is pointed out that intervention strategies for intestinal flora and its metabolites may be a new target for the prevention and treatment of cholesterol gallstones in the future.
-
Key words:
- Gastrointestinal Microbiome /
- Cholelithiasis /
- Enterohepatic Circulation /
- Bile Acid
-
[1] DI CIAULA A, WANG DQ, PORTINCASA P. An update on the pathogenesis of cholesterol gallstonedisease[J]. CurrOpinGastroenterol, 2018, 34(2): 71-80. DOI: 10.1097/MOG.0000000000000423. [2] LIU C, XUE DB. Advances in research on mechanism of cholesterol gallstone[J]. Med Recapitulate, 2019, 25(11): 2103-2108. DOI: 10.3969/j.issn.1006-2084.2019.11.005.刘超, 薛东波. 胆囊胆固醇结石发生机制的研究进展[J]. 医学综述, 2019, 25(11): 2103-2108. DOI: 10.3969/j.issn.1006-2084.2019.11.005. [3] HE XY, SHI J. Consensus on diagnosis and treatment of chronic cholecystitis and gallstones in China(2018)[J]. J Clin Hepatol, 2019, 35(6): 1231-1236. DOI: 10.3969/j.issn.1001-5256.2019.06.011.何相宜, 施健. 中国慢性胆囊炎、胆囊结石内科诊疗共识意见(2018年)[J]. 临床肝胆病杂志, 2019, 35(6): 1231-1236. DOI: 10.3969/j.issn.1001-5256.2019.06.011. [4] LOZUPONE CA, STOMBAUGH JI, GORDON JI, et al. Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489(7415): 220-230. DOI: 10.1038/nature11550. [5] BELKAID Y, NAIK S. Compartmentalized and systemic control of tissue immunity by commensals[J]. Nat Immunol, 2013, 14(7): 646-653. DOI: 10.1038/ni.2604. [6] TANG W, BÄCKHED F, LANDMESSER U, et al. Intestinal microbiota in cardiovascular health and disease: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2019, 73(16): 2089-2105. DOI: 10.1016/j.jacc.2019.03.024. [7] SUN J, CHANG EB. Exploring gut microbes in human health and disease: Pushing the envelope[J]. Genes Dis, 2014, 1(2): 132-139. DOI: 10.1016/j.gendis.2014.08.001. [8] SUN L, LI J, LAN LL, et al. Advances in influence factors of gut microbiota[J]. Chemistry of Life, 2019, 39(6): 1133-1137. DOI: 10.13488/j.smhx.20190120.孙琳, 黎军, 兰莉莉, 等. 肠道菌群的影响因素[J]. 生命的化学, 2019, 39(6): 1133-1137. DOI: 10.13488/j.smhx.20190120. [9] LI F, YE J, SHAO C, et al. Compositional alterations of gut microbiota in nonalcoholic fatty liver disease patients: a systematic review and Meta-analysis[J]. Lipids Health Dis, 2021, 20(1): 22. DOI: 10.1186/s12944-021-01440-w. [10] LI XY, ZHU Y. Role of intestinal flora imbalance in intestinal mucosal barrier injury of acute pancreatitis[J]. Chin J Prac Int Med, 2021, 41(1): 14-17. DOI: 10.19538/j.nk2021010104.李雪洋, 祝荫. 肠道菌群失衡在急性胰腺炎肠黏膜屏障损伤中的作用[J]. 中国实用内科杂志, 2021, 41(1): 14-17. DOI: 10.19538/j.nk2021010104. [11] WANG Q, JIAO L, HE C, et al. Alteration of gut microbiota in association with cholesterol gallstone formation in mice[J]. BMC Gastroenterol, 2017, 17(1): 74. DOI: 10.1186/s12876-017-0629-2. [12] ZENG ZH, LIU RR, TANG L, et al. Interaction between gut microbiota and bile acid metabolism[J]. Chin J Microecol, 2021, 33(7): 849-856. DOI: 10.13381/j.cnki.cjm.202107022.曾忠花, 刘容容, 汤俐, 等. 肠道菌群与胆汁酸代谢的互相作用[J]. 中国微生态学杂志, 2021, 33(7): 849-856. DOI: 10.13381/j.cnki.cjm.202107022. [13] ZHANG Y, LI JX, WANG YL. Role of bile acid metabolism and related receptors in the development and progression of nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2020, 36(6): 1374-1377. DOI: 10.3969/j.issn.1001-5256.2020.06.040.张阳, 李军祥, 王允亮. 胆汁酸代谢及其受体在非酒精性脂肪性肝病发生发展中的作用[J]. 临床肝胆病杂志, 2020, 36(6): 1374-1377. DOI: 10.3969/j.issn.1001-5256.2020.06.040. [14] SUN HD, JIANG ZY. Recent progress in gut microbiota and bile acid metabolism[J]. Chin Bull Life Sci, 2016, 28(11): 1405-1409. DOI: 10.13376/j.cbls/2016181.孙海东, 蒋兆彦. 肠道微生态与胆汁酸代谢研究进展[J]. 生命科学, 2016, 28(11): 1405-1409. DOI: 10.13376/j.cbls/2016181. [15] JIANG J, HANG X, ZHANG M, et al. Diversity of bile salt hydrolase activities in different lactobacilli toward human bile salts[J]. Ann Microbiol, 2009, 60(1): 81-88. DOI: 10.1007/s13213-009-0004-9. [16] SRIDEVI N, VISHWE P, PRABHUNE A. Hypocholesteremic effect of bile salt hydrolase from Lactobacillus buchneri ATCC 4005[J]. Food Res Int, 2009, 42(4): 516-520. DOI: 10.1016/j.foodres.2009.02.016. [17] MICHAEL DR, DAVIES TS, MOSS J, et al. The anti-cholesterolaemic effect of a consortium of probiotics: An acute study in C57BL/6J mice[J]. Sci Rep, 2017, 7(1): 2883. DOI: 10.1038/s41598-017-02889-5. [18] GOMEZ-OSPINA N, POTTER CJ, XIAO R, et al. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis[J]. Nat Commun, 2016, 7: 10713. DOI: 10.1038/ncomms10713. [19] KLIEWER SA, MANGELSDORF DJ. Bile acids as hormones: The FXR-FGF15/19 pathway[J]. Dig Dis, 2015, 33(3): 327-331. DOI: 10.1159/000371670. [20] SAYIN SI, WAHLSTRÖM A, FELIN J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist[J]. Cell Metab, 2013, 17(2): 225-235. DOI: 10.1016/j.cmet.2013.01.003. [21] HU X, BONDE Y, EGGERTSEN G, et al. Muricholic bile acids are potent regulators of bile acid synthesis via a positive feedback mechanism[J]. J Intern Med, 2014, 275(1): 27-38. DOI: 10.1111/joim.12140. [22] ZOU B, TANG Y, YANG WL, et al. Role of intestinal microbiota-farnesoid X receptor axis in metabolic diseases[J]. Chin J Pathophysiol, 2019, 35(9): 1716-1720. DOI: 10.3969/j.issn.1000-4718.2019.09.029.邹步, 唐莹, 杨文玲, 等. 肠道菌群-FXR轴在代谢性疾病中的作用[J]. 中国病理生理杂志, 2019, 35(9): 1716-1720. DOI: 10.3969/j.issn.1000-4718.2019.09.029. [23] WANG Q, XUE DB. Intestinal flora participates in the formation of cholesterol gallstones by affecting bile acid metabolism[J]. J Hepatopancreatobiliary Surg, 2020, 32(1): 6-8. DOI: 10.11952/j.issn.1007-1954.2020.01.002.王强, 薛东波. 肠道菌群通过影响胆汁酸代谢参与胆囊胆固醇结石形成[J]. 肝胆胰外科杂志, 2020, 32(1): 6-8. DOI: 10.11952/j.issn.1007-1954.2020.01.002. [24] RIDLON JM, HARRIS SC, BHOWMIK S, et al. Consequences of bile salt biotransformations by intestinal bacteria[J]. Gut Microbes, 2016, 7(1): 22-39. DOI: 10.1080/19490976.2015.1127483. [25] GAO G. Correlation between intestinal flora and cholesterol gallstones[D]. Dalian: Dalian Medical University, 2019.高过. 肠道菌群与胆囊胆固醇结石相关性研究[D]. 大连: 大连医科大学, 2019. [26] KEREN N, KONIKOFF FM, PAITAN Y, et al. Interactions between the intestinal microbiota and bile acids in gallstones patients[J]. Environ Microbiol Rep, 2015, 7(6): 874-880. DOI: 10.1111/1758-2229.12319. [27] LIU JD, BAYIR HO, COSBY DE, et al. Evaluation of encapsulated sodium butyrate on growth performance, energy digestibility, gut development, and Salmonella colonization in broilers[J]. Poult Sci, 2017, 96(10): 3638-3644. DOI: 10.3382/ps/pex174. [28] JANG YS, IM JA, CHOI SY, et al. Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity[J]. Metab Eng, 2014, 23: 165-174. DOI: 10.1016/j.ymben.2014.03.004. [29] MA J. Distribution of gut microbiota in asymptomatic patients with gallstones and its clinical significance[J]. Chin J Integr Trad West Med Dig, 2020, 28(1): 43-46. DOI: 10.3969/j.issn.1671-038X.2020.01.12.马峻. 无症状胆囊结石患者肠道菌群的分布情况及其临床意义[J]. 中国中西医结合消化杂志, 2020, 28(1): 43-46. DOI: 10.3969/j.issn.1671-038X.2020.01.12. [30] WANG J, ZHANG H, CHEN X, et al. Selection of potential probiotic lactobacilli for cholesterol-lowering properties and their effect on cholesterol metabolism in rats fed a high-lipid diet[J]. J Dairy Sci, 2012, 95(4): 1645-1654. DOI: 10.3168/jds.2011-4768. [31] DANG WC, ZHANG YC. Relationship between butyrate and formation of cholesterol gallstones[J]. Chin J Gen Surg, 2020, 29(8): 994-999. DOI: 10.7659/j.issn.1005-6947.2020.08.011.党文呈, 张有成. 丁酸与胆固醇型胆结石形成的关系[J]. 中国普通外科杂志, 2020, 29(8): 994-999. DOI: 10.7659/j.issn.1005-6947.2020.08.011. [32] WANG BG, XU HB, WEI H, et al. Oral administration of Bifidobacterim bifidum for modulating microflora, acid and bile resistance, and physiological indices in mice[J]. Can J Microbiol, 2015, 61(2): 155-163. DOI: 10.1139/cjm-2014-0694. [33] DEGIROLAMO C, RAINALDI S, BOVENGA F, et al. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice[J]. Cell Rep, 2014, 7(1): 12-18. DOI: 10.1016/j.celrep.2014.02.032. [34] BENNETT BJ, DE AGUIAR VALLIM TQ, WANG Z, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation[J]. Cell Metab, 2013, 17(1): 49-60. DOI: 10.1016/j.cmet.2012.12.011. [35] DING L, CHANG M, GUO Y, et al. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism[J]. Lipids Health Dis, 2018, 17(1): 286. DOI: 10.1186/s12944-018-0939-6. [36] CHEN Y, WENG Z, LIU Q, et al. FMO3 and its metabolite TMAO contribute to the formation of gallstones[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(10): 2576-2585. DOI: 10.1016/j.bbadis.2019.06.016. [37] SANG HQ, REN WQ, CHEN P. Experimental study of changes in flavin monooxygenase 3 and its metabolite levels in formation of gallbladder cholesterol stone in plateau areas[J]. Chin J Gen Surg, 2021, 30(2): 158-164. DOI: 10.7659/j.issn.1005-6947.2021.02.005.桑海泉, 任伟强, 陈鹏. 黄素单加氧酶3及其代谢产物水平的变化对高原地区胆囊胆固醇结石形成影响的实验研究[J]. 中国普通外科杂志, 2021, 30(2): 158-164. DOI: 10.7659/j.issn.1005-6947.2021.02.005.
本文二维码
计量
- 文章访问数: 949
- HTML全文浏览量: 208
- PDF下载量: 85
- 被引次数: 0