去脂软肝方对非酒精性脂肪性肝炎大鼠FXR-FGF19通路的影响
DOI: 10.3969/j.issn.1001-5256.2022.05.018
Effect of Quzhi Ruangan prescription on the farnesoid X receptor-fibroblast growth factor 19 pathway in rats with nonalcoholic steatohepatitis
-
摘要:
目的 观察去脂软肝方对非酒精性脂肪性肝炎(NASH)模型大鼠法尼醇X受体(FXR)-成纤维细胞因子19(FGF19)通路的影响。 方法 雄性SD大鼠随机分为正常组(Control组,n=8)、模型组(HFD组,n=12)、辛伐他汀组(Simvastatin组,n=8)、去脂软肝方高剂量组(QH组,n=8)、去脂软肝方低剂量组(QL组,n=8),Control组给予普通饲料喂养,其余组高脂饲料喂养。10周末取材,观察大鼠肝脏病理切片变化,检测各组血清肝功能指标、肝脏与小肠FGF19、肝脏中胆汁酸(BA)。检测小肠FXR、肝脏胆固醇7α-羟化酶(CYP7A1)表达情况。多组间比较采用单因素方差分析,进一步两组间比较采用LSD-t检验。 结果 与Control组相比,HFD组病理表现出明显炎性病变和脂肪变性。与HFD组相比,各用药组的HDL-C显著升高,ALT、AST、TC、TG、LDL-C均显著下降(P值均<0.05)。与Control组相比,HFD组大鼠小肠FGF19显著下降、肝脏BA显著升高(P值均<0.05)。与HFD组相比,各用药组的小肠中FGF19显著升高,肝脏BA显著下降(P值均<0.05)。与Control组相比,HFD组大鼠小肠FXR mRNA显著下降,肝脏CYP7A1 mRNA显著升高(P值均<0.05)。与HFD组相比,QH组小肠FXR mRNA显著升高,QL组显著降低(P值均<0.05);QH组肝脏CYP7A1 mRNA显著下降(P<0.05)。与Control组相比,HFD组大鼠小肠FXR阳性率显著下降,肝脏CYP7A1阳性率显著上升(P值均<0.05)。与HFD组相比,Simvastatin组、QH组小肠FXR阳性率显著升高(P值均<0.05),Simvastatin组、QH组、QL组肝脏CYP7A1阳性率显著下降(P值均<0.05)。 结论 去脂软肝方可激活NASH大鼠FXR-FGF19通路,并可能通过该途径对NASH产生防治作用。 Abstract:Objective To investigate the effect of Quzhi Ruangan prescription on the farnesoid X receptor (FXR)-fibroblast growth factor 19 (FGF19) pathway in rats with nonalcoholic steatohepatitis (NASH). Methods Male Sprague-Dawley rats were randomly divided into normal group (Control group with 8 rats), model group (HFD group with 12 rats), simvastatin group with 8 rats, high-dose Quzhi Ruangan prescription group (QH group with 8 rats), and low-dose Quzhi Ruangan prescription group (QL group with 8 rats). The rats in the Control group were fed with a normal diet and those in the other groups were fed with a high-fat diet. Related samples were collected at the end of week 10 to observe liver pathological changes and measure the serum levels of liver function parameters, the level of FGF19 in the liver and the small intestine, and the level of bile acid (BA) in the liver. The expression levels of FXR in the small intestine and cholesterol 7α-hydroxylase (CYP7A1) in the liver were also measured. A one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison bewteen two groups. Results Compared with the Control group, the HFD group showed the pathological manifestations of marked inflammatory lesions and steatosis. Compared with the HFD group, all administration groups had a significant increase in high-density lipoprotein cholesterol and significant reductions in alanine aminotransferase, aspartate aminotransferase, total cholesterol, triglyceride, and low-density lipoprotein cholesterol (all P < 0.05). Compared with the Control group, the HFD group had a significant reduction in FGF19 in the small intestine and a significant increase in BA in the liver (both P < 0.05). Compared with the HFD group, all administration groups had a significant increase in FGF19 in the small intestine and a significant reduction in BA in the liver (all P < 0.05). Compared with the Control group, the HFD group had a significant reduction in the mRNA expression of FXR in the small intestine and a significant increase in the mRNA expression of CYP7A1 in the liver (both P < 0.05). Compared with the HFD group, the QH group had a significant increase in the mRNA expression of FXR in the small intestine, while the QL group had a significant reduction (both P < 0.05), and the QH group had a significant reduction in the mRNA expression of CYP7A1 in the liver (P < 0.05). Compared with the Control group, the HFD group had a significant reduction in the positive rate of FXR in the small intestine and a significant increase in the positive rate of CYP7A1 in the liver (both P < 0.05). Compared with the HFD group, the simvastatin group and the QH group had a significant increase in the positive rate of FXR in the small intestine (both P < 0.05), and the simvastatin group, the QH group, and the QL group had a significant reduction in the positive rate of CYP7A1 in the liver (all P < 0.05). Conclusion Quzhi Ruangan prescription can activate the FXR-FGF19 pathway in NASH rats and may exert a preventive and therapeutic effect on NASH through this pathway. -
Key words:
- Non-alcoholic Steatohepatitis /
- Farnesol X Receptor /
- Cytokines
-
表 1 大鼠肝脏油红O切片阳性率比较
Table 1. Comparison of positive rate of oil red O section of rat liver
组别 动物数(只) 油红O染色阳性率(%) Control组 8 0.25±0.06 HFD组 8 20.50±2.181) Simvastatin组 8 1.98±0.732) QH组 8 1.11±0.912) QL组 8 2.81±1.091)2) F值 174.143 P值 <0.05 注:与Control组相比,1)P<0.05;与HFD组相比,2)P<0.05。 表 2 大鼠血脂、血清肝功能指标比较
Table 2. Comparison of blood lipids and serum liver function indexes in rats
组别 ALT
(U/L)AST
(U/L)TC
(mmol/L)TG
(mmol/L)HDL-C
(mmol/L)LDL-C
(mmol/L)Control组 34.62±3.11 125.37±25.23 1.32±0.11 0.41±0.06 0.87±0.06 0.22±0.04 HFD组 65.25±26.951) 229.50±80.131) 2.23±0.371) 0.81±0.141) 0.45±0.051) 1.29±0.351) Simvastatin组 32.75±4.302) 113.50±22.052) 1.17±0.141)2) 0.32±0.071)2) 0.56±0.101)2) 0.48±0.071)2) QH组 38.62±0.912) 128.50±10.922) 1.23±0.232) 0.27±0.031)2) 0.62±0.171)2) 0.50±0.171)2) QL组 35.62±2.772) 148.00±13.682) 1.22±0.182) 0.28±0.061)2) 0.57±0.101)2) 0.61±0.111)2) F值 9.57 11.11 30.98 56.01 17.45 37.17 P值 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 注:与Control组相比,1)P<0.05;与HFD组相比,2)P<0.05。 表 3 大鼠肝脏、小肠中FGF19和肝脏中BA水平比较
Table 3. Comparisons of FGF19 in liver, FGF19 in small intestine and BA in liver of rats
组别 小肠FGF19
(pg/mgpro)肝脏FGF19
(pg/mgpro)肝脏BA
(nmol/mgpro)Control组 597.49±38.61 92.33±32.25 3.43±0.51 HFD组 354.21±64.661) 77.52±14.99 7.54±0.301) Simvastatin组 512.07±29.321)2) 116.33±18.062) 4.31±0.301)2) QH组 449.52±49.431)2) 180.06±217.92 5.26±0.601)2) QL组 474.01±30.041)2) 86.16±12.05 5.73±0.451)2) F值 31.98 1.40 94.35 P值 <0.05 <0.05 <0.05 注:与Control组相比,1)P<0.05;与HFD组相比,2)P<0.05。 表 4 大鼠小肠FXR mRNA、肝脏CYP7A1 mRNA相对表达量比较
Table 4. FXR mRNA in the small intestine and CYP7A1 mRNA in the liver
组别 动物数
(只)肝脏CYP7A1
mRNA小肠FXR
mRNAControl组 6 0.30±0.09 0.90±0.10 HFD组 6 0.96±0.231) 0.33±0.041) Simvastatin组 6 1.66±0.351)2) 0.34±0.071) QH组 6 0.53±0.071)2) 1.08±0.251)2) QL组 6 1.43±0.271)2) 0.01±0.001)2) F值 71.23 36.94 P值 <0.05 <0.05 注:与Control组相比,1)P<0.05;与HFD组相比,2)P<0.05。 表 5 小肠FXR、肝脏CYP7A1阳性率
Table 5. Comparisons of positive rates of FXR in small intestines and CYP7A1 in liver
组别 动物数
(只)肝脏CYP7A1
阳性率(%)小肠FXR
阳性率(%)Control组 3 0.31±0.21 3.36±0.09 HFD组 3 1.56±1.181) 0.56±0.091) Simvastatin组 3 0.09±0.142) 3.34±0.092) QH组 3 0.42±0.442) 2.84±0.091)2) QL组 3 0.07±0.102) 1.08±0.091) F值 13.908 12.163 P值 <0.05 <0.05 注:与Control组相比,1)P<0.05;与HFD组相比,2)P<0.05。 -
[1] SHEKA AC, ADEYI O, THOMPSON J, et al. Nonalcoholic steatohepatitis: A review[J]. JAMA, 2020, 323(12): 1175-1183. DOI: 10.1001/jama.2020.2298. [2] XI Y, LI H. Role of farnesoid X receptor in hepatic steatosis in nonalcoholic fatty liver disease[J]. Biomed Pharmacother, 2020, 121: 109609. DOI: 10.1016/j.biopha.2019.109609. [3] KIR S, BEDDOW SA, SAMUEL VT, et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis[J]. Science, 2011, 331(6024): 1621-1624. DOI: 10.1126/science.1198363. [4] WANG RR, JI G. Interaction between intestinal flora and bile acid and non-alcoholic fatty liver disease[J]. Chin J Integr Tradit West Med Liver Dis, 2020, 30(4): 378-382. DOI: 10.3969/j.issn.1005-0264.2020.04.028.王睿瑞, 季光. 肠道菌群和胆汁酸相互作用与非酒精性脂肪性肝病[J]. 中西医结合肝病杂志, 2020, 30(4): 378-382. DOI: 10.3969/j.issn.1005-0264.2020.04.028. [5] CHEN WH, LIU B, ZHANG C. Clinical observation on 126 cases of fatty liver treated with Quzhi Ruangan decoction[J]. Yunnan J Tradit Chin Med Mater Med, 2000, 21(5): 2-3. https://www.cnki.com.cn/Article/CJFDTOTAL-YZYY200005000.htm陈文慧, 刘冰, 张超. 去脂软肝汤治疗脂肪肝126例疗效观察[J]. 云南中医中药杂志, 2000, 21(5): 2-3. https://www.cnki.com.cn/Article/CJFDTOTAL-YZYY200005000.htm [6] SUN LL, SHI J, HAO JH, et al. Effect of high-fat diet on establishment of a rat non-alcoholic steatohepatitis/liver fibrosis model[J]. J Clin Hepatol, 2011, 27(3): 254-257, 272. DOI: 10.3969/j.issn.1001-5256.2011.03.009.孙林林, 石军, 郝菁华, 等. 高脂饮食致大鼠非酒精性脂肪性肝炎肝纤维化模型的建立[J]. 临床肝胆病杂志, 2011, 27(3): 254-257, 272. DOI: 10.3969/j.issn.1001-5256.2011.03.009. [7] HAO H, CAO L, JIANG C, et al. Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated sepsis[J]. Cell Metab, 2017, 25(4): 856-867. e5. DOI: 10.1016/j.cmet.2017.03.007. [8] CLIFFORD BL, SEDGEMAN LR, WILLIAMS KJ, et al. FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption[J]. Cell Metab, 2021, 33(8): 1671-1684. e4. DOI: 10.1016/j.cmet.2021.06.012. [9] HERNANDEZ GV, SMITH VA, MELNYK M, et al. Dysregulated FXR-FGF19 signaling and choline metabolism are associated with gut dysbiosis and hyperplasia in a novel pig model of pediatric NASH[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(3): G582-G609. DOI: 10.1152/ajpgi.00344.2019. [10] LU X, HAN T, TIAN Y, et al. Research progress in roles of gut microbiota and bile acid metabolism in development and progression of NAFLD[J]. J Clin Hepatol, 2014, 30(11): 1225-1228. DOI: 10.3969/j.issn.1001-5256.2014.11.034.鲁旭, 韩涛, 田垚, 等. 肠道菌群和胆汁酸代谢对非酒精性脂肪性肝病发生发展的作用[J]. 临床肝胆病杂志, 2014, 30(11): 1225-1228. DOI: 10.3969/j.issn.1001-5256.2014.11.034. [11] CHEN YY, LAN YM, WANG MG, et al. Mechanism of action of bile acid-farnesoid X receptor-intestinal microecological axis in the development of liver failure and liver regeneration[J]. J Clin Hepatol, 2021, 37(2): 480-484. DOI: 10.3969/j.issn.1001-5256.2021.02.049.陈研焰, 蓝艳梅, 王明刚, 等. 胆汁酸-法尼醇核受体R-肠道微生态轴在肝衰竭发生及肝再生中的作用机制[J]. 临床肝胆病杂志, 2021, 37(2): 480-484. DOI: 10.3969/j.issn.1001-5256.2021.02.049. [12] SHI QR. Based on the research Quzhi Ruangan Decoction platelet active control rat early fatty liver mechanism[D]. Kunming: Yunnan University of Traditional Chinese Medicine, 2012.施钦柔. 基于血小板活化研究去脂软肝方防治大鼠早期脂肪肝的作用机制[D]. 昆明: 云南中医学院, 2012. [13] ZHANG SZ, SHI AH, BIAN Y, et al. Influence of Quzhi Ruangan Formula on blood fat and hemorheology of rats with early fatty liver[J]. China J Tradit Chin Med Pharma, 2015, 30(3): 875-877. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY201503069.htm张顺贞, 石安华, 卞瑶, 等. 去脂软肝方对早期脂肪肝大鼠血脂及血液流变学的影响[J]. 中华中医药杂志, 2015, 30(3): 875-877. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY201503069.htm [14] BIAN Y, HUANG WJ, YAO Z, et al. Experimental research of Quzhi Ruan'gan Prescription in effect of von Willebrand factor in rats with fatty liver caused by high fat[J]. China Med Herald, 2014, 11(1): 4-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY201401003.htm卞瑶, 黄文俊, 姚政, 等. 去脂软肝方对高脂诱导大鼠脂肪肝血管性血友病因子作用的实验研究[J]. 中国医药导报, 2014, 11(1): 4-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY201401003.htm [15] ZHANG SY, XIA ER, ZHOU QL, et al. Effect of Quzhi Ruangan decoction on the mRNA and protein expression of organic anion transporting polypeptide 2B1 in the small intestine of rats with nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2020, 36(11): 2484-2488. DOI: 10.3969/j.issn.1001-5256.2020.11.017.张素妍, 夏恩蕊, 周青丽, 等. 去脂软肝方对非酒精性脂肪性肝病大鼠模型小肠中有机阴离子转运多肽2B1 mRNA和蛋白表达水平的影响[J]. 临床肝胆病杂志, 2020, 36(11): 2484-2488. DOI: 10.3969/j.issn.1001-5256.2020.11.017. [16] ZHOU QL. Effect of Quzhi Ruangan Fang on the expression of NLRP3 inflammasome and related factors in rats with non-alcoholic steatohepatitis[D]. Kunming: Yunnan University of Traditional Chinese Medicine, 2020.周青丽. 去脂软肝方对非酒精性脂肪性肝炎大鼠NLRP3炎症小体及相关因子表达的影响[D]. 昆明: 云南中医药大学, 2020. [17] YAO ZM, CHEN WD, YANG ZH, et al. Research progress in atractylodes macrocephala and predictive analysis on Q-marker[J]. Chin Tradit Herb Drug, 2019, 50(19): 4796-4807. DOI: 10.7501/j.issn.0253-2670.2019.19.031.姚兆敏, 陈卫东, 仰忠华, 等. 白术研究进展及其质量标志物(Q-marker)的预测分析[J]. 中草药, 2019, 50(19): 4796-4807. DOI: 10.7501/j.issn.0253-2670.2019.19.031. [18] SHI J. Study on the classification of fortykinds of Chinese Herbal Pieces[D]. Beijing: China Academy of Chinese Medical Sciences, 2020.石佳. 四十种中药饮片等级评价研究[D]. 北京: 中国中医科学院, 2020. [19] ZHOU HP, REN MX, GUAN JQ, et al. Research progress on chemical constituents and pharmacological effects of Chrysanthemum morifolium and predictive analysis on quality markers[J]. Chin Tradit Herb Drug, 2019, 50(19): 4785-4795. DOI: 10.7501/j.issn.0253-2670.2019.19.030.周衡朴, 任敏霞, 管家齐, 等. 菊花化学成分、药理作用的研究进展及质量标志物预测分析[J]. 中草药, 2019, 50(19): 4785-4795. DOI: 10.7501/j.issn.0253-2670.2019.19.030. [20] CHEN H, LIU CY, LI CY. Advances in studies on chemical constituents and pharmacologic effects of Pericarpium Citri Reticulatae Viride[J]. Chin Tradit Herb Drug, 2001, 32(11): 93-95. DOI: 10.3321/j.issn:0253-2670.2001.11.039.陈红, 刘传玉, 李承晏. 青皮的化学及药理作用研究进展[J]. 中草药, 2001, 32(11): 93-95. DOI: 10.3321/j.issn:0253-2670.2001.11.039. [21] PANG HT, LUO DS, GUO J. Study on chemical constituents of Notoginseng Radix et Rhizoma and network pharmacology of its anti-inflammatory mechanism[J]. Chin Tradit Herb Drug, 2020, 51(21): 5538-5547. DOI: 10.7501/j.issn.0253-2670.2020.21.018.庞会婷, 罗朵生, 郭姣. 三七化学成分分析及其抗炎机制的网络药理学探讨[J]. 中草药, 2020, 51(21): 5538-5547. DOI: 10.7501/j.issn.0253-2670.2020.21.018.