肿瘤相关成纤维细胞在胰腺癌治疗耐药中的作用
DOI: 10.3969/j.issn.1001-5256.2022.05.048
利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:闫毅负责拟定写作思路,检索文献,撰写论文; 郭亚荣负责课题设计; 贾军梅负责指导、修改论文并最终定稿。
-
摘要: 胰腺癌是致命的恶性肿瘤之一,其致密的间质,占胰腺肿瘤体积的90%,是胰腺癌生存率低的主要原因。肿瘤相关成纤维细胞(CAF)是存在于胰腺癌肿瘤间质中的一类重要细胞群,激活后的CAF引起强烈的促结缔组织间质反应,并分泌多种可溶性分子重塑细胞外基质,形成一个更有利于胰腺癌增殖、侵袭转移的微环境。目前越来越多的证据表明CAF在胰腺癌治疗耐药中扮演着重要的角色,尤其是在化疗和免疫治疗方面,CAF通过干扰抗肿瘤药物的代谢、参与耐药相关信号通路、形成免疫抑制微环境等机制,造成胰腺癌治疗的有效率低。本文将从化疗和免疫治疗两个方面论述CAF参与胰腺癌治疗耐药的具体机制,以期为寻找胰腺癌新的治疗靶点,提高胰腺癌治疗有效率提供新的思路。Abstract: Pancreatic cancer is one of the fatal malignant tumors, and its dense stroma, which accounts for 90% of the volume of pancreatic tumor, is the main reason for the low survival rate of pancreatic cancer. Cancer-associated fibroblasts (CAFs) are an important group of cells in the tumor stroma of pancreatic cancer, and activated CAFs induce a strong connective tissue interstitial reaction and secretes a variety of soluble molecules to remodel the extracellular matrix, thereby forming a microenvironment that helps with the proliferation, invasion, and metastasis of pancreatic cancer. At present, an increasing number of evidence has shown that CAFs play an important role in the drug resistance of pancreatic cancer, especially in chemotherapy and immunotherapy, and CAFs result in a low response rate of pancreatic cancer treatment by interfering with the metabolism of antitumor drugs, participating in the signaling pathways associated with drug resistance, and forming an immunosuppressive microenvironment. This article elaborates on the specific mechanism of CAFs participating in the drug resistance of pancreatic cancer from the two aspects of chemotherapy and immunotherapy, in order to provide new ideas for identifying new therapeutic targets for pancreatic cancer and improving the response rate of pancreatic cancer treatment.
-
Key words:
- Pancreatic Neoplasms /
- Fibroblasts /
- Immune Toleranc
-
[1] SIEGEL RL, MILLER KD, FUCHS HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654. [2] NEOPTOLEMOS JP, KLEEFF J, MICHL P, et al. Therapeutic developments in pancreatic cancer: Current and future perspectives[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(6): 333-348. DOI: 10.1038/s41575-018-0005-x. [3] RIBAS A, WOLCHOK JD. Cancer immunotherapy using checkpoint blockade[J]. Science, 2018, 359(6382): 1350-1355. DOI: 10.1126/science.aar4060. [4] BEDNAR F, PASCA DI MAGLIANO M. Context-dependent immune responses explain pancreatic cancer immunoresistance[J]. Cancer Cell, 2020, 37(3): 261-263. DOI: 10.1016/j.ccell.2020.02.010. [5] LIANG C, SHI S, MENG Q, et al. Complex roles of the stroma in the intrinsic resistance to gemcitabine in pancreatic cancer: Where we are and where we are going[J]. Exp Mol Med, 2017, 49(12): e406. DOI: 10.1038/emm.2017.255. [6] POTHULA SP, XU Z, GOLDSTEIN D, et al. Key role of pancreatic stellate cells in pancreatic cancer[J]. Cancer Lett, 2016, 381(1): 194-200. DOI: 10.1016/j.canlet.2015.10.035. [7] STEER A, CORDES N, JENDROSSEK V, et al. Impact of cancer-associated fibroblast on the radiation-response of solid xenograft tumors[J]. Front Mol Biosci, 2019, 6: 70. DOI: 10.3389/fmolb.2019.00070. [8] OGIER C, COLOMBO PE, BOUSQUET C, et al. Targeting the NRG1/HER3 pathway in tumor cells and cancer-associated fibroblasts with an anti-neuregulin 1 antibody inhibits tumor growth in pre-clinical models of pancreatic cancer[J]. Cancer Lett, 2018, 432: 227-236. DOI: 10.1016/j.canlet.2018.06.023. [9] HESLER RA, HUANG JJ, STARR MD, et al. TGF-β-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3[J]. Carcinogenesis, 2016, 37(11): 1041-1051. DOI: 10.1093/carcin/bgw093. [10] LU JL, WANG LL, LIANG XL, et al. High-molecular-weight hyaluronan produced by activated pancreatic stellate cells promotes pancreatic cancer cell migration via paracrine signaling[J]. Biochem Biophys Res Commun, 2019, 515(3): 493-498. DOI: 10.1016/j.bbrc.2019.05.167. [11] DUFORT CC, DELGIORNO KE, CARLSON MA, et al. Interstitial pressure in pancreatic ductal adenocarcinoma is dominated by a gel-fluid phase[J]. Biophys J, 2016, 110(9): 2106-2119. DOI: 10.1016/j.bpj.2016.03.040. [12] GOEHRIG D, NIGRI J, SAMAIN R, et al. Stromal protein βig-h3 reprogrammes tumour microenvironment in pancreatic cancer[J]. Gut, 2019, 68(4): 693-707. DOI: 10.1136/gutjnl-2018-317570. [13] HESSMANN E, PATZAK MS, KLEIN L, et al. Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer[J]. Gut, 2018, 67(3): 497-507. DOI: 10.1136/gutjnl-2016-311954. [14] PUSCEDDU S, GHIDINI M, TORCHIO M, et al. Comparative effectiveness of gemcitabine plus nab-paclitaxel and FOLFIRINOX in the first-line setting of metastatic pancreatic cancer: A systematic review and meta-analysis[J]. Cancers (Basel), 2019, 11(4): 484. DOI: 10.3390/cancers11040484. [15] AMRUTKAR M, GLADHAUG IP. Pancreatic cancer chemoresistance to gemcitabine[J]. Cancers (Basel), 2017, 9(11): 157. DOI: 10.3390/cancers9110157. [16] AMRUTKAR M, VETHE NT, VERBEKE CS, et al. Differential gemcitabine sensitivity in primary human pancreatic cancer cells and paired stellate cells is driven by heterogenous drug uptake and processing[J]. Cancers (Basel), 2020, 12(12): 3628. DOI: 10.3390/cancers12123628. [17] HESLER RA, HUANG JJ, STARR MD, et al. TGF-β-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3[J]. Carcinogenesis, 2016, 37(11): 1041-1051. DOI: 10.1093/carcin/bgw093. [18] DALIN S, SULLIVAN MR, LAU AN, et al. Deoxycytidine release from pancreatic stellate cells promotes gemcitabine resistance[J]. Cancer Res, 2019, 79(22): 5723-5733. DOI: 10.1158/0008-5472.CAN-19-0960. [19] LIU SL, CAO SG, LI Y, et al. Pancreatic stellate cells facilitate pancreatic cancer cell viability and invasion[J]. Oncol Lett, 2019, 17(2): 2057-2062. DOI: 10.3892/ol.2018.9816. [20] AMRUTKAR M, AASRUM M, VERBEKE CS, et al. Secretion of fibronectin by human pancreatic stellate cells promotes chemoresistance to gemcitabine in pancreatic cancer cells[J]. BMC Cancer, 2019, 19(1): 596. DOI: 10.1186/s12885-019-5803-1. [21] PERAN I, DAKSHANAMURTHY S, MCCOY MD, et al. Cadherin 11 promotes immunosuppression and extracellular matrix deposition to support growth of pancreatic tumors and resistance to gemcitabine in mice[J]. Gastroenterology, 2021, 160(4): 1359-1372. e13. DOI: 10.1053/j.gastro.2020.11.044. [22] LEE J, YAKUBOV B, IVAN C, et al. Tissue transglutaminase activates cancer-associated fibroblasts and contributes to gemcitabine resistance in pancreatic cancer[J]. Neoplasia, 2016, 18(11): 689-698. DOI: 10.1016/j.neo.2016.09.003. [23] WEI L, YE H, LI G, et al. Correction: Cancer-associated fibroblasts promote progression and gemcitabine resistance via the SDF-1/SATB-1 pathway in pancreatic cancer[J]. Cell Death Dis, 2021, 12(3): 232. DOI: 10.1038/s41419-021-03420-5. [24] NEUMANN C, VON HÖRSCHELMANN E, REUTZEL-SELKE A, et al. Tumor-stromal cross-talk modulating the therapeutic response in pancreatic cancer[J]. Hepatobiliary Pancreat Dis Int, 2018, 17(5): 461-472. DOI: 10.1016/j.hbpd.2018.09.004. [25] FELDMANN K, MAURER C, PESCHKE K, et al. Mesenchymal Plasticity regulated by prrx1 drives aggressive pancreatic cancer biology[J]. Gastroenterology, 2021, 160(1): 346-361. e24. DOI: 10.1053/j.gastro.2020.09.010. [26] WEI L, LIN Q, LU Y, et al. Cancer-associated fibroblasts-mediated ATF4 expression promotes malignancy and gemcitabine resistance in pancreatic cancer via the TGF-β1/ SMAD2/3 pathway and ABCC1 transactivation[J]. Cell Death Dis, 2021, 12(4): 334. DOI: 10.1038/s41419-021-03574-2. [27] IRELAND L, SANTOS A, AHMED MS, et al. Chemoresistance in pancreatic cancer is driven by stroma-derived insulin-like growth factors[J]. Cancer Res, 2016, 76(23): 6851-6863. DOI: 10.1158/0008-5472.CAN-16-1201. [28] ZHANG D, LI L, JIANG H, et al. Tumor-Stroma IL1β-IRAK4 feedforward circuitry drives tumor fibrosis, chemoresistance, and poor prognosis in pancreatic cancer[J]. Cancer Res, 2018, 78(7): 1700-1712. DOI: 10.1158/0008-5472.CAN-17-1366. [29] VENNIN C, MÉLÉNEC P, ROUET R, et al. CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan[J]. Nat Commun, 2019, 10(1): 3637. DOI: 10.1038/s41467-019-10968-6. [30] TOSTE PA, NGUYEN AH, KADERA BE, et al. Chemotherapy-induced inflammatory gene signature and protumorigenic phenotype in pancreatic CAFs via stress-associated MAPK[J]. Mol Cancer Res, 2016, 14(5): 437-447. DOI: 10.1158/1541-7786.MCR-15-0348. [31] FANG Y, ZHOU W, RONG Y, et al. Exosomal miRNA-106b from cancer-associated fibroblast promotes gemcitabine resistance in pancreatic cancer[J]. Exp Cell Res, 2019, 383(1): 111543. DOI: 10.1016/j.yexcr.2019.111543. [32] CAO J, MA J, SUN L, et al. Targeting glypican-4 overcomes 5-FU resistance and attenuates stem cell-like properties via suppression of Wnt/β-catenin pathway in pancreatic cancer cells[J]. J Cell Biochem, 2018, 119(11): 9498-9512. DOI: 10.1002/jcb.27266. [33] ZHOU T, LIU J, XIE Y, et al. ESE3/EHF, a promising target of rosiglitazone, suppresses pancreatic cancer stemness by downregulating CXCR4[J]. Gut, 2022, 71(2): 357-371. DOI: 10.1136/gutjnl-2020-321952. [34] BEGUM A, MCMILLAN RH, CHANG YT, et al. Direct interactions with cancer-associated fibroblasts lead to enhanced pancreatic cancer stem cell function[J]. Pancreas, 2019, 48(3): 329-334. DOI: 10.1097/MPA.0000000000001249. [35] CHAN TS, HSU CC, PAI VC, et al. Metronomic chemotherapy prevents therapy-induced stromal activation and induction of tumor-initiating cells[J]. J Exp Med, 2016, 213(13): 2967-2988. DOI: 10.1084/jem.20151665. [36] KUEN J, DAROWSKI D, KLUGE T, et al. Pancreatic cancer cell/fibroblast co-culture induces M2 like macrophages that influence therapeutic response in a 3D model[J]. PLoS One, 2017, 12(7): e0182039. DOI: 10.1371/journal.pone.0182039. [37] DAS S, SHAPIRO B, VUCIC EA, et al. Tumor cell-derived IL1β promotes desmoplasia and immune suppression in pancreatic cancer[J]. Cancer Res, 2020, 80(5): 1088-1101. DOI: 10.1158/0008-5472.CAN-19-2080. [38] BLAIR AB, KIM VM, MUTH ST, et al. Dissecting the stromal signaling and regulation of myeloid cells and memory effector T cells in pancreatic cancer[J]. Clin Cancer Res, 2019, 25(17): 5351-5363. DOI: 10.1158/1078-0432.CCR-18-4192. [39] FAN CS, CHEN LL, HSU TA, et al. Endothelial-mesenchymal transition harnesses HSP90α-secreting M2-macrophages to exacerbate pancreatic ductal adenocarcinoma[J]. J Hematol Oncol, 2019, 12(1): 138. DOI: 10.1186/s13045-019-0826-2. [40] ZHANG A, QIAN Y, YE Z, et al. Cancer-associated fibroblasts promote M2 polarization of macrophages in pancreatic ductal adenocarcinoma[J]. Cancer Med, 2017, 6(2): 463-470. DOI: 10.1002/cam4.993. [41] NAJAFI M, HASHEMI GORADEL N, FARHOOD B, et al. Macrophage polarity in cancer: A review[J]. J Cell Biochem, 2019, 120(3): 2756-2765. DOI: 10.1002/jcb.27646. [42] van AUDENAERDE J, ROEYEN G, DARCY PK, et al. Natural killer cells and their therapeutic role in pancreatic cancer: A systematic review[J]. Pharmacol Ther, 2018, 189: 31-44. DOI: 10.1016/j.pharmthera.2018.04.003. [43] FRANCESCONE R, BARBOSA VENDRAMINI-COSTA D, FRANCO-BARRAZA J, et al. Netrin G1 promotes pancreatic tumorigenesis through cancer-associated fibroblast-driven nutritional support and immunosuppression[J]. Cancer Discov, 2021, 11(2): 446-479. DOI: 10.1158/2159-8290.CD-20-0775. [44] WU Y, TIAN Z, WEI H. Developmental and functional control of natural killer cells by cytokines[J]. Front Immunol, 2017, 8: 930. DOI: 10.3389/fimmu.2017.00930. [45] GARG B, GIRI B, MODI S, et al. NFκB in pancreatic stellate cells reduces infiltration of tumors by cytotoxic T cells and killing of cancer cells, via up-regulation of CXCL12[J]. Gastroenterology, 2018, 155(3): 880-891. e8. DOI: 10.1053/j.gastro.2018.05.051. [46] DOMINGUEZ CX, MVLLER S, KEERTHIVASAN S, et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy[J]. Cancer Discov, 2020, 10(2): 232-253. DOI: 10.1158/2159-8290.CD-19-0644. [47] WANG Y, GAO Z, DU X, et al. Co-inhibition of the TGF-β pathway and the PD-L1 checkpoint by pH-responsive clustered nanoparticles for pancreatic cancer microenvironment regulation and anti-tumor immunotherapy[J]. Biomater Sci, 2020, 8(18): 5121-5132. DOI: 10.1039/d0bm00916d. [48] ELYADA E, BOLISETTY M, LAISE P, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts[J]. Cancer Discov, 2019, 9(8): 1102-1123. DOI: 10.1158/2159-8290.CD-19-0094. [49] TANG D, GAO J, WANG S, et al. Apoptosis and anergy of T cell induced by pancreatic stellate cells-derived galectin-1 in pancreatic cancer[J]. Tumour Biol, 2015, 36(7): 5617-5626. DOI: 10.1007/s13277-015-3233-5. [50] OROZCO CA, MARTINEZ-BOSCH N, GUERRERO PE, et al. Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor-stroma crosstalk[J]. Proc Natl Acad Sci U S A, 2018, 115(16): e3769-e3778. DOI: 10.1073/pnas.1722434115. [51] BRUNETTO E, de MONTE L, BALZANO G, et al. The IL-1/IL-1 3receptor axis and tumor cell released inflammasome adaptor ASC are key regulators of TSLP secretion by cancer associated fibroblasts in pancreatic cancer[J]. J Immunother Cancer, 2019, 7(1): 45. DOI: 10.1186/s40425-019-0521-4. [52] GORCHS L, FERNÁNDEZ MORO C, BANKHEAD P, et al. Human pancreatic carcinoma-associated fibroblasts promote expression of co-inhibitory markers on CD4+ and CD8+ T-Cells[J]. Front Immunol, 2019, 10: 847. DOI: 10.3389/fimmu.2019.00847. [53] KOIKAWA K, KIBE S, SUIZU F, et al. Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy[J]. Cell, 2021, 184(18): 4753-4771. e27. DOI: 10.1016/j.cell.2021.07.020. [54] WEN Z, LIU Q, WU J, et al. Fibroblast activation protein α-positive pancreatic stellate cells promote the migration and invasion of pancreatic cancer by CXCL1-mediated Akt phosphorylation[J]. Ann Transl Med, 2019, 7(20): 532. DOI: 10.21037/atm.2019.09.164. [55] FEIG C, JONES JO, KRAMAN M, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer[J]. Proc Natl Acad Sci U S A, 2013, 110(50): 20212-20217. DOI: 10.1073/pnas.1320318110. [56] ZHANG Y, ERTL HC. Depletion of FAP+ cells reduces immunosuppressive cells and improves metabolism and functions CD8+T cells within tumors[J]. Oncotarget, 2016, 7(17): 23282-23299. DOI: 10.18632/oncotarget.7818. [57] WANG Y, LIANG Y, XU H, et al. Single-cell analysis of pancreatic ductal adenocarcinoma identifies a novel fibroblast subtype associated with poor prognosis but better immunotherapy response[J]. Cell Discov, 2021, 7(1): 36. DOI: 10.1038/s41421-021-00271-4.