N6-甲基腺苷修饰在HBV感染中的作用
DOI: 10.3969/j.issn.1001-5256.2022.06.034
利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:薛萍负责收集数据,资料分析,撰写论文;范超负责拟定写作思路,指导撰写文章并最后定稿。
-
摘要: N6-甲基腺苷(m6A)甲基化修饰现象普遍存在于人体各个组织和细胞中,是真核生物mRNA普遍的内部修饰。m6A修饰是动态可逆的,多种甲基转移酶、去甲基化酶及m6A结合蛋白参与此过程的调控。最近的研究结果表明,m6A修饰可影响病毒基因的表达,尤其在HBV感染过程中发挥着重要的作用。本文简要概括了m6A修饰的研究现状及机制,并重点关注其与HBV感染的关系。阐述了HBV转录物的m6A修饰作用,回顾了m6A参与HBV感染免疫应答的相关研究结果,归纳了HBV感染对宿主细胞m6A修饰及HBV相关肝细胞癌的影响,以期探讨其在HBV感染研究中的发展方向和潜在价值。Abstract: The phenomenon of N6-methyladenosine (m6A)-methylation is commonly observed in various tissues and cells of the human body and is the most common type of internal modification in eukaryotic mRNA. m6A-methylation is dynamic and reversible, which is regulated by various methyltransferases, demethylases, and m6A binding protein. Recent studies have shown that m6A modification can affect viral gene expression and plays an important role in the process of HBV infection. This article summarizes the current research status and mechanism of m6A-methylation, especially its association with HBV infection. This article also elaborates on the effect of m6A modification on HBV transcripts, reviews the research findings of m6A in immune response of HBV infection, and summarizes the effect of HBV infection on m6A modification in normal host hepatocytes and hepatitis B liver cancer, so as to discuss the development direction and potential value of m6A in HBV infection.
-
Key words:
- Hepatitis B virus /
- N6-methyladenosine /
- Immune Response
-
[1] BOCCALETTO P, MACHNICKA MA, PURTA E, et al. MODOMICS: a data base of RNA modification pathways. 2017 update[J]. Nucleic Acids Res, 2018, 46(Issue D1): 303-307. [2] WU F, CHENG W, ZHAO F, et al. Association of N6-methyladenosine with viruses and virally induced diseases[J]. Front Biosci (Landmark Ed), 2020, 25(6): 1184-1201. DOI: 10.2741/4852. [3] VANDIVIER LE, GREGORY BD. Reading the epitranscriptome: New techniques and perspectives[J]. Enzymes, 2017, 41: 269-298. DOI: 10.1016/bs.enz.2017.03.004. [4] GROZHIK AV, LINDER B, OLARERIN-GEORGE AO, et al. Mapping m6A at individual-nucleotide resolution using crosslinking and immunoprecipitation (miCLIP)[J]. Methods Mol Biol, 2017, 1562: 55-78. DOI: 10.1007/978-1-4939-6807-7_5. [5] KE S, PANDYA-JONES A, SAITO Y, et al. m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover[J]. Genes Dev, 2017, 31(10): 990-1006. DOI: 10.1101/gad.301036.117. [6] XIAO Y, WANG Y, TANG Q, et al. An elongation- and ligation-based qPCR amplification method for the radiolabeling-free detection of locus-specific N6-methyladenosine modification[J]. Angew Chem Int Ed Engl, 2018, 57(49): 15995-16000. DOI: 10.1002/anie.201807942. [7] WILLIAMS GD, GOKHALE NS, HORNER SM. Regulation of Viral Infection by the RNA Modification N6-Methyladenosine[J]. Annu Rev Virol, 2019, 6(1): 235-253. DOI: 10.1146/annurev-virology-092818-015559. [8] ZHAO BS, HE C. "Gamete On" for m6A: YTHDF2 exerts essential functions in female fertility[J]. Mol Cell, 2017, 67(6): 903-905. DOI: 10.1016/j.molcel.2017.09.004. [9] WU F, CHENG W, ZHAO F, et al. Association of N6-methyladenosine with viruses and related diseases[J]. Virol J, 2019, 16(1): 133. DOI: 10.1186/s12985-019-1236-3. [10] IMAM H, KHAN M, GOKHALE NS, et al. N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle[J]. Proc Natl Acad Sci U S A, 2018, 115(35): 8829-8834. DOI: 10.1073/pnas.1808319115. [11] LIU Y, YOU Y, LU Z, et al. N6-methyladenosine RNA modification-mediated cellular metabolism rewiring inhibits viral replication[J]. Science, 2019, 365(6458): 1171-1176. DOI: 10.1126/science.aax4468. [12] HSU PJ, ZHU Y, MA H, et al. YTHDC2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis[J]. Cell Res, 2017, 27(9): 1115-1127. DOI: 10.1038/cr.2017.99. [13] WARDA AS, KRETSCHMER J, HACKERT P, et al. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs[J]. EMBO Rep, 2017, 18(11): 2004-2014. DOI: 10.15252/embr.201744940. [14] IANNIELLO Z, FATICA A. N6 -methyladenosine role in acute myeloid leukaemia[J]. Int J Mol Sci, 2018, 19(8): 2345. DOI: 10.3390/ijms19082345. [15] PENDLETON KE, CHEN B, LIU K, et al. The U6 snRNA m6A methyltransferase mettl16 regulates SAM synthetase intron retention[J]. Cell, 2017, 169(5): 824-835.e14. DOI: 10.1016/j.cell.2017.05.003. [16] DOXTADER KA, WANG P, SCARBOROUGH AM, et al. Structural basis for regulation of METTL16, an S-adenosylmethionine homeostasis factor[J]. Mol Cell, 2018, 71(6): 1001-1011.e4. DOI: 10.1016/j.molcel.2018.07.025. [17] SHI H, WANG X, LU Z, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA[J]. Cell Res, 2017, 27(3): 315-328. DOI: 10.1038/cr.2017.15. [18] LI A, CHEN YS, PING XL, et al. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation[J]. Cell Res, 2017, 27(3): 444-447. DOI: 10.1038/cr.2017.10. [19] ROUNDTREE IA, LUO GZ, ZHANG Z, et al. YTHDC1 mediates nuclear export of N6 -methyladenosine methylated mRNAs[J]. Elife, 2017, 6: e31311. DOI: 10.7554/eLife.31311. [20] MAUER J, LUO X, BLANJOIE A, et al. Reversible methylation of m6Am in the 5' cap controls mRNA stability[J]. Nature, 2017, 541(7637): 371-375. DOI: 10.1038/nature21022. [21] HU J, PROTZER U, SIDDIQUI A. Revisiting hepatitis B virus: Challenges of curative therapies[J]. J Virol, 2019, 93(20): e01032-19. DOI: 10.1128/JVI.01032-19. [22] KIM GW, SIDDIQUI A. The role of N6-methyladenosine modification in the life cycle and disease pathogenesis of hepatitis B and C viruses[J]. Exp Mol Med, 2021, 53(3): 339-345. DOI: 10.1038/s12276-021-00581-3. [23] IMAM H, KIM GW, SIDDIQUI A. Epitranscriptomic(N6-methyladenosine) modification of viral RNA and virus-host interactions[J]. Front Cell Infect Microbiol, 2020, 10: 584283. DOI: 10.3389/fcimb.2020.584283. [24] KIM GW, IMAM H, KHAN M, et al. N6-Methyladenosine modification of hepatitis B and C viral RNAs attenuates host innate immunity via RIG-I signaling[J]. J Biol Chem, 2020, 295(37): 13123-13133. DOI: 10.1074/jbc.RA120.014260. [25] LIU Y, NIE H, MAO R, et al. Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA[J]. PLoS Pathog, 2017, 13(4): e1006296. DOI: 10.1371/journal.ppat.1006296. [26] IMAM H, KIM GW, MIR SA, et al. Interferon-stimulated gene 20 (ISG20) selectively degrades N6 -methyladenosine modified hepatitis B Virus transcripts[J]. PLoS Pathog, 2020, 16(2): e1008338. DOI: 10.1371/journal.ppat.1008338. [27] KIM GW, IMAM H, KHAN M, et al. HBV-induced increased N6 methyladenosine modification of PTEN RNA affects innate immunity and contributes to HCC[J]. Hepatology, 2021, 73(2): 533-547. DOI: 10.1002/hep.31313. [28] LI S, ZHU M, PAN R, et al. The tumor suppressor PTEN has a critical role in antiviral innate immunity[J]. Nat Immunol, 2016, 17(3): 241-249. DOI: 10.1038/ni.3311. [29] KIM GW, SIDDIQUI A. Hepatitis B virus X protein recruits methyltransferases to affect cotranscriptional N6 -methyladenosine modification of viral/host RNAs[J]. Proc Natl Acad Sci U S A, 2021, 118(3): e2019455118. DOI: 10.1073/pnas.2019455118. [30] MINOR MM, HOLLINGER FB, MCNEES AL, et al. Hepatitis B virus HBx protein mediates the degradation of host restriction factors through the cullin 4 DDB1 E3 ubiquitin ligase complex[J]. Cells, 2020, 9(4): 834. DOI: 10.3390/cells9040834. [31] YUAN XD, WANG JW, FANG Y, et al. Methylation status of the T-cadherin gene promotor in peripheral blood mononuclear cells is associated with HBV-related hepatocellular carcinoma progression[J]. Pathol Res Pract, 2020, 216(5): 152914. DOI: 10.1016/j.prp.2020.152914. [32] CHEN M, WEI L, LAW CT, et al. RNA N6 -methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepatology, 2018, 67(6): 2254-2270. DOI: 10.1002/hep.29683. [33] CHEN CY, CHEN J, HE L, et al. PTEN: Tumor suppressor and metabolic regulator[J]. Front Endocrinol (Lausanne), 2018, 9: 338. DOI: 10.3389/fendo.2018.00338. [34] RINGELHAN M, MCKEATING JA, PROTZER U. Viral hepatitis and liver cancer[J]. Philos Trans R Soc Lond B Biol Sci, 2017, 372(1732): 20160274. DOI: 10.1098/rstb.2016.0274. [35] RAO X, LAI L, LI X, et al. N6 -methyladenosine modification of circular RNA circ-ARL3 facilitates hepatitis B virus-associated hepatocellular carcinoma via sponging miR-1305[J]. IUBMB Life, 2021, 73(2): 408-417. DOI: 10.1002/iub.2438. [36] HESSER CR, KARIJOLICH J, DOMINISSINI D, et al. N6 -methyladenosine modification and the YTHDF2 reader protein play cell type specific roles in lytic viral gene expression during Kaposi's sarcoma-associated herpesvirus infection[J]. PLoS Pathog, 2018, 14(4): e1006995. DOI: 10.1371/journal.ppat.1006995. [37] TAN B, GAO SJ. The RNA epitranscriptome of DNA viruses[J]. J Virol, 2018, 92(22): e00696-18. DOI: 10.1128/JVI.00696-18. [38] GONZALES-VAN HORN SR, SARNOW P. Making the mark: The role of adenosine modifications in the life cycle of RNA viruses[J]. Cell Host Microbe, 2017, 21(6): 661-669. DOI: 10.1016/j.chom.2017.05.008. [39] COURTNEY DG, TSAI K, BOGERD HP, et al. Epitranscriptomic addition of m5C to HIV-1 transcripts regulates viral gene expression[J]. Cell Host Microbe, 2019, 26(2): 217-227.e6. DOI: 10.1016/j.chom.2019.07.005. [40] TSAI K, JAGUVA VASUDEVAN AA, MARTINEZ CAMPOS C, et al. Acetylation of cytidine residues boosts HIV-1 gene expression by increasing viral RNA stability[J]. Cell Host Microbe, 2020, 28(2): 306-312.e6. DOI: 10.1016/j.chom.2020.05.011.