中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

治疗慢性乙型肝炎新药研发的研究进展

刘义思 陈新月

引用本文:
Citation:

治疗慢性乙型肝炎新药研发的研究进展

DOI: 10.3969/j.issn.1001-5256.2022.06.035
基金项目: 

北京市医院管理中心重点医学专业发展计划(扬帆计划)资助 (ZYLX202125);

首都卫生发展科研专项项目 (首发2020-1-2181)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:刘义思负责文献检索和撰写;陈新月负责拟定写作思路,终审定稿。
详细信息
    通信作者:

    陈新月,chenxydoc@163.com

Advances in the research and development of new drugs for chronic hepatitis B

More Information
  • 摘要: 当前针对慢性乙型肝炎的抗病毒治疗临床治愈率低,并且难以清除cccDNA。随着医药水平的进步,越来越多的新药正处于研发阶段。重点阐述临床试验数据较详尽代表性药物的研发情况。近些年来小干扰RNA、核心蛋白变构调节剂等新药进展较快。从临床试验结果来看,新药进入临床使用仍需一定的时间,并且多药联合方案可能会成为今后的治疗趋势。

     

  • 图  1  HBV生命周期及相关药物靶点

    Figure  1.  HBV life cycle and drug targets in development

    表  1  治疗CHB的在研药物

    Table  1.   The drug for chronic hepatitis B in development

    药物名称 类别 生产公司 研发阶段
    Hepcludex (Bulevirtide) 进入抑制剂 Hepatera, Russia with MYR GmbH, Germany Ⅱ期
    HH-003 进入抑制剂 Huahui Health, China Ⅱ期
    EBT-107 CRISPR/Cas9 Excision Biotherapeutic, USA 临床前
    JNJ-3989 (ARO-HBV) siRNA Arrowhead pharma, USA with Janssen Ⅱb期
    ALN-HBV02 (VIR-2218) siRNA Alnylam and VirBiotech, USA Ⅱ期
    DCR-HBVS (RG6346) siRNA Roche with Dicerna, USA Ⅱ期
    AB-729 (GalNAc-RNAi) siRNA Arbutus Biopharma, USA Ⅰb期
    ALG-125775 siRNA Aligos Therapeutics, USA Ⅰ期
    GSK3228836 (IONIS-HBVRx) ASO Ionis Parma, USA with GSK Ⅱ期
    ALG-020572 (formerly ALG-ASO) ASO Aligos Therapeutics, USA Ⅰ期
    GLS4 (Morphothiadin) CpAM HEC Pharma, China Ⅱ期
    ABI-H0731 (Vebicorvir) CpAM Assembly Biosciences, USA with BeiGene, China Ⅱ期
    JNJ-6379 CpAM Janssen, Ireland Ⅱ期
    RG7907 CpAM Roche, Switzerland Ⅰ期
    GST-HG141 CpAM Cosunter pharmaceutical co., LTD, Fujian, China Ⅰb期
    REP 2139 HBsAg抑制剂 Replicor, Canada Ⅱ期
    REP 2165 HBsAg抑制剂 Replicor, Canada Ⅱ期
    GST-HG131 HBsAg抑制剂 Cosunter pharmaceutical co., LTD, Fujian, China Ⅰ期
    GS-9688 (Selgantolimod) TLR-8激动剂 Gilead Sicence, USA Ⅱ期
    RG7854 TLR-7激动剂 Roche, Switzerland Ⅱ期
    ASC-22 (KN-035) PD-L1抑制剂 Ascletis Pharma, China Ⅱb期
    GS-4224 PD-L1抑制剂 Gilead Sciences, USA Ⅰ期
    NASVAC 治疗性疫苗 CIGB, Cuba Ⅲ期
    CVI-HBV-002 治疗性疫苗 CHA Vaccine Institute, Korea Ⅱb期
    GS-4774 治疗性疫苗 GobeImmune with Gilead, USA Ⅱ期
    HepTcell 治疗性疫苗 Altimmune, USA Ⅱ期
    TG1050 治疗性疫苗 Transgene, France with Tasly, China Ⅱ期
    下载: 导出CSV
  • [1] World Health Organization. Global hepatitis report 2017[EB/OL]. [2022-10-29]. https://apps.who.int/iris/handle/10665/255016.
    [2] Chinese Society of Infectious Diseases, Chinese Medical Association, Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the prevention and treatment of chronic hepatitis B (version 2019)[J]. J Clin Hepatol, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.

    中华医学会感染病学分会, 中华医学会肝病学分会. 慢性乙型肝炎防治指南(2019年版)[J]. 临床肝胆病杂志, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.
    [3] FANNING GC, ZOULIM F, HOU J, et al. Therapeutic strategies for hepatitis B virus infection: Towards a cure[J]. Nat Rev Drug Discov, 2019, 18(11): 827-844. DOI: 10.1038/s41573-019-0037-0.
    [4] MOUZANNAR K, LIANG TJ. Hepatitis B virus-recent therapeutic advances and challenges to cure[J]. J Hepatol, 2020, 73(3): 694-695. DOI: 10.1016/j.jhep.2020.04.015.
    [5] YAN H, ZHONG G, XU G, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus[J]. Elife, 2012, 1: e00049. DOI: 10.7554/eLife.00049.
    [6] BIJSMANS IT, BOUWMEESTER RA, GEYER J, et al. Homo- and hetero-dimeric architecture of the human liver Na+-dependent taurocholate co-transporting protein[J]. Biochem J, 2012, 441(3): 1007-1015. DOI: 10.1042/BJ20111234.
    [7] NI Y, LEMPP FA, MEHRLE S, et al. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes[J]. Gastroenterology, 2014, 146(4): 1070-1083. DOI: 10.1053/j.gastro.2013.12.024.
    [8] UHL P, HELM F, HOFHAUS G, et al. A liposomal formulation for the oral application of the investigational hepatitis B drug Myrcludex B[J]. Eur J Pharm Biopharm, 2016, 103: 159-166. DOI: 10.1016/j.ejpb.2016.03.031.
    [9] KANG C, SYED YY. Bulevirtide: First approval[J]. Drugs, 2020, 80(15): 1601-1605. DOI: 10.1007/s40265-020-01400-1.
    [10] WEDEMEYER H, SCHÖNEWEIS K, BOGOMOLOV P, et al. GS-13-Final results of a multicenter, open-label phase 2 clinical trial (MYR203) to assess safety and efficacy of myrcludex B in cwith PEG-interferon Alpha 2a in patients with chronic HBV/HDV co-infection[J]. J Hepatol, 2019, 70: e81. DOI: 10.1016/S0618-8278(19)30141-0.
    [11] WEDEMEYER H, BOGOMOLOV P, BLANK A, et al. Final results of a multicenter, open-label phase 2b clinical trial to assess safety and efficacy of Myrcludex B in combination with Tenofovir in patients with chronic HBV/HDV co-infection[J]. J Hepatol, 2018, 68(1): S3. DOI: 10.1016/S0168-8278(18)30224-1.
    [12] CONG L, RAN FA, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. DOI: 10.1126/science.1231143.
    [13] RAN FA, HSU PD, WRIGHT J, et al. Genome engineering using the CRISPR-Cas9 system[J]. Nat Protoc, 2013, 8(11): 2281-2308. DOI: 10.1038/nprot.2013.143.
    [14] SANDER JD, JOUNG JK. CRISPR-Cas systems for editing, regulating and targeting genomes[J]. Nat Biotechnol, 2014, 32(4): 347-355. DOI: 10.1038/nbt.2842.
    [15] BLOOM K, MAEPA MB, ELY A, et al. Gene therapy for chronic HBV-can we eliminate cccDNA?[J]. Genes (Basel), 2018, 9(4): 207. DOI: 10.3390/genes9040207.
    [16] LIN SR, YANG HC, KUO YT, et al. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo[J]. Mol Ther Nucleic Acids, 2014, 3: e186. DOI: 10.1038/mtna.2014.38.
    [17] LI H, SHENG C, LIU H, et al. An effective molecular target site in hepatitis B virus S gene for Cas9 cleavage and mutational inactivation[J]. Int J Biol Sci, 2016, 12(9): 1104-1113. DOI: 10.7150/ijbs.16064.
    [18] DONG C, QU L, WANG H, et al. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication[J]. Antiviral Res, 2015, 118: 110-117. DOI: 10.1016/j.antiviral.2015.03.015.
    [19] SEEGER C, SOHN JA. Complete spectrum of CRISPR/Cas9-induced mutations on HBV cccDNA[J]. Mol Ther, 2016, 24(7): 1258-1266. DOI: 10.1038/mt.2016.94.
    [20] WENG Y, XIAO H, ZHANG J, et al. RNAi therapeutic and its innovative biotechnological evolution[J]. Biotechnol Adv, 2019, 37(5): 801-825. DOI: 10.1016/j.biotechadv.2019.04.012.
    [21] GISH RG, YUEN MF, CHAN HL, et al. Synthetic RNAi triggers and their use in chronic hepatitis B therapies with curative intent[J]. Antiviral Res, 2015, 121: 97-108. DOI: 10.1016/j.antiviral.2015.06.019.
    [22] YUEN MF, LIU K, GIVEN B, et al. RNA interference therapy with ARC-520 Injection results in long term off-therapy antigen reductions in treatment naïve, HBeAg positive and negative patients with chronic HBV[J]. J Hepatol, 2018, 68: S526. DOI: 10.1016/S0168-8278(18)31302-3.
    [23] YUEN MF, LOCARNINI S, LIM TH, et al. PS-080-Short term RNA interference therapy in chronic hepatitis B using JNJ-3989 brings majority of patients to HBsAg < 100 IU/ml threshold[J]. J Hepatol, 2019, 70(1): e51-e52. DOI: 10.1016/S0618-8278(19)30092-1
    [24] GANE E, LOCARNINI S, LIM TH, et al. Short-term treatment with RNA interference therapy, JNJ-3989, results in sustained hepatitis B surface antigen supression in patients with chronic hepatitis B receiving nucleos(t)ide analogue treatment[J]. J Hepatol, 2020, 73: S20. DOI: 10.1016/S0168-8278(20)30597-3.
    [25] GANE E, LIM YS, TANGKIJVANICH P, et al. Preliminary safety and antiviral activity of VIR-2218, an X-targeting HBV RNAi therapeutic, in chronic hepatitis B patients[J]. J Hepatol, 2020, 73: S50-S51. DOI: 10.1016/S0168-8278(20)30647-4.
    [26] BENNETT CF, SWAYZE EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform[J]. Annu Rev Pharmacol Toxicol, 2010, 50: 259-293. DOI: 10.1146/annurev.pharmtox.010909.105654.
    [27] YUEN MF, HEO J, JANG J, et al. Hepatitis B virus (HBV) surface antigen (HBsAg) inhibition with isis 505358 in chronic hepatitis B (CHB) patients on stable nucleos (t)ide analogue (NA) regimen and in NA-naive CHB patients: phase 2a, randomized, double-blind, placebo-controlled study[J]. J Hepatol, 2020, 73: S49-S50. DOI: 10.1016/S0168-8278(20)30646-2.
    [28] PRAKASH TP, GRAHAM MJ, YU J, et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice[J]. Nucleic Acids Res, 2014, 42(13): 8796-8807. DOI: 10.1093/nar/gku531.
    [29] ZHOU HY. Application and mechanism of action of antisense oligonucleotides in precise treatment[J]. J Pre Med, 2020, 35(4): 283-286, 291. DOI: 10.13362/j.jpmed.202004001.

    周海燕. 反义寡核苷酸药物在精准治疗中的应用进展及其作用机制[J]. 精准医学杂志, 2020, 35(4): 283-286, 291. DOI: 10.13362/j.jpmed.202004001.
    [30] GANE E, YUEN MF, KIM DJ, et al. Clinical study of single-stranded oligonucleotide RO7062931 in healthy volunteers and patients with chronic hepatitis B[J]. Hepatology, 2021, 74(4): 1795-1808. DOI: 10.1002/hep.31920.
    [31] ZLOTNICK A, VENKATAKRISHNAN B, TAN Z, et al. Core protein: A pleiotropic keystone in the HBV lifecycle[J]. Antiviral Res, 2015, 121: 82-93. DOI: 10.1016/j.antiviral.2015.06.020.
    [32] WINGFIELD PT, STAHL SJ, WILLIAMS RW, et al. Hepatitis core antigen produced in Escherichia coli: Subunit composition, conformational analysis, and in vitro capsid assembly[J]. Biochemistry, 1995, 34(15): 4919-4932. DOI: 10.1021/bi00015a003.
    [33] WYNNE SA, CROWTHER RA, LESLIE AG. The crystal structure of the human hepatitis B virus capsid[J]. Mol Cell, 1999, 3(6): 771-780. DOI: 10.1016/s1097-2765(01)80009-5.
    [34] ZHANG H, WANG F, ZHU X, et al. Antiviral activity and pharmacokinetics of the hepatitis B virus (HBV) capsid assembly modulator GLS4 in patients with chronic HBV infection[J]. Clin Infect Dis, 2021, 73(2): 175-182. DOI: 10.1093/cid/ciaa961.
    [35] ZHANG M, ZHANG J, TAN Y, et al. Efficacy and safety of GLS4/ritonavir combined with entecavir in HBeAg-positive patients with chronic hepatitis B: interim results from phase 2b, multi-center study[J]. J Hepatol, 2020, 73: S878-S880. DOI: 10.1016/S0168-8278(20)32197-8.
    [36] MA X, LALEZARI J, NGUYEN T, et al. LBO-06-Interim safety and efficacy results of the ABI-H0731 phase 2a program exploring the combination of ABI-H0731 with Nuc therapy in treatment-naive and treatment-suppressed chronic hepatitis B patients[J]. J Hepatol, 2019, 70: e130. DOI: 10.1016/S0618-8278(19)30230-0.
    [37] BLANCHET M, SINNATHAMBY V, VAILLANT A, et al. Inhibition of HBsAg secretion by nucleic acid polymers in HepG2.2.15?cells[J]. Antiviral Res, 2019, 164: 97-105. DOI: 10.1016/j.antiviral.2019.02.009.
    [38] LIU Y, ZHOU T, SIMSEK E, et al. The degradation pathway for the HBV envelope proteins involves proteolysis prior to degradation via the cytosolic proteasome[J]. Virology, 2007, 369(1): 69-77. DOI: 10.1016/j.virol.2007.06.048.
    [39] LAZAR C, MACOVEI A, PETRESCU S, et al. Activation of ERAD pathway by human hepatitis B virus modulates viral and subviral particle production[J]. PLoS One, 2012, 7(3): e34169. DOI: 10.1371/journal.pone.0034169.
    [40] AL-MAHTAB M, BAZINET M, VAILLANT A. Safety and Efficacy of nucleic acid polymers in monotherapy and combined with immunotherapy in treatment-naive bangladeshi patients with HBeAg+ chronic hepatitis B infection[J]. PLoS One, 2016, 11(6): e0156667. DOI: 10.1371/journal.pone.0156667.
    [41] BAZINET M, PÂNTEA V, PLACINTA G, et al. Safety and efficacy of 48 weeks REP 2139 or REP 2165, tenofovir disoproxil, and pegylated interferon Alfa-2a in patients with chronic HBV infection naïve to nucleos(t)ide therapy[J]. Gastroenterology, 2020, 158(8): 2180-2194. DOI: 10.1053/j.gastro.2020.02.058.
    [42] ZHANG Z, ZHANG JY, WANG LF, et al. Immunopathogenesis and prognostic immune markers of chronic hepatitis B virus infection[J]. J Gastroenterol Hepatol, 2012, 27(2): 223-230. DOI: 10.1111/j.1440-1746.2011.06940.x.
    [43] DANDRI M, LOCARNINI S. New insight in the pathobiology of hepatitis B virus infection[J]. Gut, 2012, 61(Suppl 1): i6-i17. DOI: 10.1136/gutjnl-2012-302056.
    [44] AMIN OE, COLBECK EJ, DAFFIS S, et al. Therapeutic potential of TLR8 agonist GS-9688 (Selgantolimod) in chronic hepatitis B: Remodeling of antiviral and regulatory mediators[J]. Hepatology, 2021, 74(1): 55-71. DOI: 10.1002/hep.31695.
    [45] GANE E, DUNBAR PR, BROOKS A, et al. Efficacy and safety of 24 weeks treatment with oral TLR8 agonist, selgantolimod, in virally-suppressed adult patients with chronic hepatitis B: A phase 2 study[J]. J Hepatol, 2020, 73: S52. DOI: 10.1016/S0168-8278(20)30650-4.
    [46] YUEN MF, CHEN CY, LIU CJ, et al. GS-12-Ascending dose cohort study of inarigivir - A novel RIG I agonist in chronic HBV patients: Final results of the ACHIEVE trial[J]. J Hepatol, 2019, 70(1): e47-e48. DOI: 10.1016/S0618-8278(19)30084-2.
    [47] AGARWAL K, AFDHAL N, COFFIN C, et al. Liver toxicity in the Phase 2 Catalyst 206 trial of Inarigivir 400 mg daily added to a nucleoside in HBV EAg negative patients[J]. J Hepatol, 2020, 73: S125. DOI: 10.1016/S0168-8278(20)30766-2.
    [48] BOWEN DG, ZEN M, HOLZ L, et al. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity[J]. J Clin Invest, 2004, 114(5): 701-712. DOI: 10.1172/JCI21593.
    [49] BERTOLINO P, TRESCOL-BIÉMONT MC, RABOURDIN-COMBE C. Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival[J]. Eur J Immunol, 1998, 28(1): 221-236. DOI: 10.1002/(SICI)1521-4141(199801)28:01<221::AID-IMMU221>3.0.CO;2-F.
    [50] YOSHIDA O, FAZLE ASM, SANADA T, et al. Anti-HBS induction and HBsAg reduction by nasal administration of a therapeutic vaccine containing HBsAg and HBcAg (NASVAC) in patients with chronic HBV infection[J]. J Hepatol, 2020, 73: S887-S888. DOI: 10.1016/S0168-8278(20)32212-1.
    [51] LOK AS, PAN CQ, HAN SH, et al. Randomized phase Ⅱ study of GS-4774 as a therapeutic vaccine in virally suppressed patients with chronic hepatitis B[J]. J Hepatol, 2016, 65(3): 509-516. DOI: 10.1016/j.jhep.2016.05.016.
    [52] PAPADOPOULOS KP, HARB W, PEER CJ, et al. First-in-human phase I study of envafolimab, a novel subcutaneous single-domain anti-PD-L1 antibody, in patients with advanced solid tumors[J]. Oncologist, 2021, 26(9): e1514-e1525. DOI: 10.1002/onco.13817.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  1390
  • HTML全文浏览量:  673
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-29
  • 录用日期:  2021-12-20
  • 出版日期:  2022-06-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回