治疗慢性乙型肝炎新药研发的研究进展
DOI: 10.3969/j.issn.1001-5256.2022.06.035
利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:刘义思负责文献检索和撰写;陈新月负责拟定写作思路,终审定稿。
-
摘要: 当前针对慢性乙型肝炎的抗病毒治疗临床治愈率低,并且难以清除cccDNA。随着医药水平的进步,越来越多的新药正处于研发阶段。重点阐述临床试验数据较详尽代表性药物的研发情况。近些年来小干扰RNA、核心蛋白变构调节剂等新药进展较快。从临床试验结果来看,新药进入临床使用仍需一定的时间,并且多药联合方案可能会成为今后的治疗趋势。Abstract: At present, antiviral therapy for chronic hepatitis B (CHB) has a low clinical cure rate and hardly remove cccDNA. With the progress of medical science, more and more new drugs are in the stage of research and development. This article focuses on the research and development of representative drugs with relatively detailed clinical trial data. Rapid progress has been made in the new drugs such as small-interfering RNA and core protein allosteric modulators in recent years. The results of clinical trials show that it still takes some time for new drugs to enter clinical use, and multi-drug combination therapy may become the trend of treatment in the future.
-
Key words:
- Hepatitis B, Chronic /
- Drug Discovery /
- Clinical Trial
-
表 1 治疗CHB的在研药物
Table 1. The drug for chronic hepatitis B in development
药物名称 类别 生产公司 研发阶段 Hepcludex (Bulevirtide) 进入抑制剂 Hepatera, Russia with MYR GmbH, Germany Ⅱ期 HH-003 进入抑制剂 Huahui Health, China Ⅱ期 EBT-107 CRISPR/Cas9 Excision Biotherapeutic, USA 临床前 JNJ-3989 (ARO-HBV) siRNA Arrowhead pharma, USA with Janssen Ⅱb期 ALN-HBV02 (VIR-2218) siRNA Alnylam and VirBiotech, USA Ⅱ期 DCR-HBVS (RG6346) siRNA Roche with Dicerna, USA Ⅱ期 AB-729 (GalNAc-RNAi) siRNA Arbutus Biopharma, USA Ⅰb期 ALG-125775 siRNA Aligos Therapeutics, USA Ⅰ期 GSK3228836 (IONIS-HBVRx) ASO Ionis Parma, USA with GSK Ⅱ期 ALG-020572 (formerly ALG-ASO) ASO Aligos Therapeutics, USA Ⅰ期 GLS4 (Morphothiadin) CpAM HEC Pharma, China Ⅱ期 ABI-H0731 (Vebicorvir) CpAM Assembly Biosciences, USA with BeiGene, China Ⅱ期 JNJ-6379 CpAM Janssen, Ireland Ⅱ期 RG7907 CpAM Roche, Switzerland Ⅰ期 GST-HG141 CpAM Cosunter pharmaceutical co., LTD, Fujian, China Ⅰb期 REP 2139 HBsAg抑制剂 Replicor, Canada Ⅱ期 REP 2165 HBsAg抑制剂 Replicor, Canada Ⅱ期 GST-HG131 HBsAg抑制剂 Cosunter pharmaceutical co., LTD, Fujian, China Ⅰ期 GS-9688 (Selgantolimod) TLR-8激动剂 Gilead Sicence, USA Ⅱ期 RG7854 TLR-7激动剂 Roche, Switzerland Ⅱ期 ASC-22 (KN-035) PD-L1抑制剂 Ascletis Pharma, China Ⅱb期 GS-4224 PD-L1抑制剂 Gilead Sciences, USA Ⅰ期 NASVAC 治疗性疫苗 CIGB, Cuba Ⅲ期 CVI-HBV-002 治疗性疫苗 CHA Vaccine Institute, Korea Ⅱb期 GS-4774 治疗性疫苗 GobeImmune with Gilead, USA Ⅱ期 HepTcell 治疗性疫苗 Altimmune, USA Ⅱ期 TG1050 治疗性疫苗 Transgene, France with Tasly, China Ⅱ期 -
[1] World Health Organization. Global hepatitis report 2017[EB/OL]. [2022-10-29]. https://apps.who.int/iris/handle/10665/255016. [2] Chinese Society of Infectious Diseases, Chinese Medical Association, Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the prevention and treatment of chronic hepatitis B (version 2019)[J]. J Clin Hepatol, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.中华医学会感染病学分会, 中华医学会肝病学分会. 慢性乙型肝炎防治指南(2019年版)[J]. 临床肝胆病杂志, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007. [3] FANNING GC, ZOULIM F, HOU J, et al. Therapeutic strategies for hepatitis B virus infection: Towards a cure[J]. Nat Rev Drug Discov, 2019, 18(11): 827-844. DOI: 10.1038/s41573-019-0037-0. [4] MOUZANNAR K, LIANG TJ. Hepatitis B virus-recent therapeutic advances and challenges to cure[J]. J Hepatol, 2020, 73(3): 694-695. DOI: 10.1016/j.jhep.2020.04.015. [5] YAN H, ZHONG G, XU G, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus[J]. Elife, 2012, 1: e00049. DOI: 10.7554/eLife.00049. [6] BIJSMANS IT, BOUWMEESTER RA, GEYER J, et al. Homo- and hetero-dimeric architecture of the human liver Na+-dependent taurocholate co-transporting protein[J]. Biochem J, 2012, 441(3): 1007-1015. DOI: 10.1042/BJ20111234. [7] NI Y, LEMPP FA, MEHRLE S, et al. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes[J]. Gastroenterology, 2014, 146(4): 1070-1083. DOI: 10.1053/j.gastro.2013.12.024. [8] UHL P, HELM F, HOFHAUS G, et al. A liposomal formulation for the oral application of the investigational hepatitis B drug Myrcludex B[J]. Eur J Pharm Biopharm, 2016, 103: 159-166. DOI: 10.1016/j.ejpb.2016.03.031. [9] KANG C, SYED YY. Bulevirtide: First approval[J]. Drugs, 2020, 80(15): 1601-1605. DOI: 10.1007/s40265-020-01400-1. [10] WEDEMEYER H, SCHÖNEWEIS K, BOGOMOLOV P, et al. GS-13-Final results of a multicenter, open-label phase 2 clinical trial (MYR203) to assess safety and efficacy of myrcludex B in cwith PEG-interferon Alpha 2a in patients with chronic HBV/HDV co-infection[J]. J Hepatol, 2019, 70: e81. DOI: 10.1016/S0618-8278(19)30141-0. [11] WEDEMEYER H, BOGOMOLOV P, BLANK A, et al. Final results of a multicenter, open-label phase 2b clinical trial to assess safety and efficacy of Myrcludex B in combination with Tenofovir in patients with chronic HBV/HDV co-infection[J]. J Hepatol, 2018, 68(1): S3. DOI: 10.1016/S0168-8278(18)30224-1. [12] CONG L, RAN FA, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. DOI: 10.1126/science.1231143. [13] RAN FA, HSU PD, WRIGHT J, et al. Genome engineering using the CRISPR-Cas9 system[J]. Nat Protoc, 2013, 8(11): 2281-2308. DOI: 10.1038/nprot.2013.143. [14] SANDER JD, JOUNG JK. CRISPR-Cas systems for editing, regulating and targeting genomes[J]. Nat Biotechnol, 2014, 32(4): 347-355. DOI: 10.1038/nbt.2842. [15] BLOOM K, MAEPA MB, ELY A, et al. Gene therapy for chronic HBV-can we eliminate cccDNA?[J]. Genes (Basel), 2018, 9(4): 207. DOI: 10.3390/genes9040207. [16] LIN SR, YANG HC, KUO YT, et al. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo[J]. Mol Ther Nucleic Acids, 2014, 3: e186. DOI: 10.1038/mtna.2014.38. [17] LI H, SHENG C, LIU H, et al. An effective molecular target site in hepatitis B virus S gene for Cas9 cleavage and mutational inactivation[J]. Int J Biol Sci, 2016, 12(9): 1104-1113. DOI: 10.7150/ijbs.16064. [18] DONG C, QU L, WANG H, et al. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication[J]. Antiviral Res, 2015, 118: 110-117. DOI: 10.1016/j.antiviral.2015.03.015. [19] SEEGER C, SOHN JA. Complete spectrum of CRISPR/Cas9-induced mutations on HBV cccDNA[J]. Mol Ther, 2016, 24(7): 1258-1266. DOI: 10.1038/mt.2016.94. [20] WENG Y, XIAO H, ZHANG J, et al. RNAi therapeutic and its innovative biotechnological evolution[J]. Biotechnol Adv, 2019, 37(5): 801-825. DOI: 10.1016/j.biotechadv.2019.04.012. [21] GISH RG, YUEN MF, CHAN HL, et al. Synthetic RNAi triggers and their use in chronic hepatitis B therapies with curative intent[J]. Antiviral Res, 2015, 121: 97-108. DOI: 10.1016/j.antiviral.2015.06.019. [22] YUEN MF, LIU K, GIVEN B, et al. RNA interference therapy with ARC-520 Injection results in long term off-therapy antigen reductions in treatment naïve, HBeAg positive and negative patients with chronic HBV[J]. J Hepatol, 2018, 68: S526. DOI: 10.1016/S0168-8278(18)31302-3. [23] YUEN MF, LOCARNINI S, LIM TH, et al. PS-080-Short term RNA interference therapy in chronic hepatitis B using JNJ-3989 brings majority of patients to HBsAg < 100 IU/ml threshold[J]. J Hepatol, 2019, 70(1): e51-e52. DOI: 10.1016/S0618-8278(19)30092-1 [24] GANE E, LOCARNINI S, LIM TH, et al. Short-term treatment with RNA interference therapy, JNJ-3989, results in sustained hepatitis B surface antigen supression in patients with chronic hepatitis B receiving nucleos(t)ide analogue treatment[J]. J Hepatol, 2020, 73: S20. DOI: 10.1016/S0168-8278(20)30597-3. [25] GANE E, LIM YS, TANGKIJVANICH P, et al. Preliminary safety and antiviral activity of VIR-2218, an X-targeting HBV RNAi therapeutic, in chronic hepatitis B patients[J]. J Hepatol, 2020, 73: S50-S51. DOI: 10.1016/S0168-8278(20)30647-4. [26] BENNETT CF, SWAYZE EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform[J]. Annu Rev Pharmacol Toxicol, 2010, 50: 259-293. DOI: 10.1146/annurev.pharmtox.010909.105654. [27] YUEN MF, HEO J, JANG J, et al. Hepatitis B virus (HBV) surface antigen (HBsAg) inhibition with isis 505358 in chronic hepatitis B (CHB) patients on stable nucleos (t)ide analogue (NA) regimen and in NA-naive CHB patients: phase 2a, randomized, double-blind, placebo-controlled study[J]. J Hepatol, 2020, 73: S49-S50. DOI: 10.1016/S0168-8278(20)30646-2. [28] PRAKASH TP, GRAHAM MJ, YU J, et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice[J]. Nucleic Acids Res, 2014, 42(13): 8796-8807. DOI: 10.1093/nar/gku531. [29] ZHOU HY. Application and mechanism of action of antisense oligonucleotides in precise treatment[J]. J Pre Med, 2020, 35(4): 283-286, 291. DOI: 10.13362/j.jpmed.202004001.周海燕. 反义寡核苷酸药物在精准治疗中的应用进展及其作用机制[J]. 精准医学杂志, 2020, 35(4): 283-286, 291. DOI: 10.13362/j.jpmed.202004001. [30] GANE E, YUEN MF, KIM DJ, et al. Clinical study of single-stranded oligonucleotide RO7062931 in healthy volunteers and patients with chronic hepatitis B[J]. Hepatology, 2021, 74(4): 1795-1808. DOI: 10.1002/hep.31920. [31] ZLOTNICK A, VENKATAKRISHNAN B, TAN Z, et al. Core protein: A pleiotropic keystone in the HBV lifecycle[J]. Antiviral Res, 2015, 121: 82-93. DOI: 10.1016/j.antiviral.2015.06.020. [32] WINGFIELD PT, STAHL SJ, WILLIAMS RW, et al. Hepatitis core antigen produced in Escherichia coli: Subunit composition, conformational analysis, and in vitro capsid assembly[J]. Biochemistry, 1995, 34(15): 4919-4932. DOI: 10.1021/bi00015a003. [33] WYNNE SA, CROWTHER RA, LESLIE AG. The crystal structure of the human hepatitis B virus capsid[J]. Mol Cell, 1999, 3(6): 771-780. DOI: 10.1016/s1097-2765(01)80009-5. [34] ZHANG H, WANG F, ZHU X, et al. Antiviral activity and pharmacokinetics of the hepatitis B virus (HBV) capsid assembly modulator GLS4 in patients with chronic HBV infection[J]. Clin Infect Dis, 2021, 73(2): 175-182. DOI: 10.1093/cid/ciaa961. [35] ZHANG M, ZHANG J, TAN Y, et al. Efficacy and safety of GLS4/ritonavir combined with entecavir in HBeAg-positive patients with chronic hepatitis B: interim results from phase 2b, multi-center study[J]. J Hepatol, 2020, 73: S878-S880. DOI: 10.1016/S0168-8278(20)32197-8. [36] MA X, LALEZARI J, NGUYEN T, et al. LBO-06-Interim safety and efficacy results of the ABI-H0731 phase 2a program exploring the combination of ABI-H0731 with Nuc therapy in treatment-naive and treatment-suppressed chronic hepatitis B patients[J]. J Hepatol, 2019, 70: e130. DOI: 10.1016/S0618-8278(19)30230-0. [37] BLANCHET M, SINNATHAMBY V, VAILLANT A, et al. Inhibition of HBsAg secretion by nucleic acid polymers in HepG2.2.15?cells[J]. Antiviral Res, 2019, 164: 97-105. DOI: 10.1016/j.antiviral.2019.02.009. [38] LIU Y, ZHOU T, SIMSEK E, et al. The degradation pathway for the HBV envelope proteins involves proteolysis prior to degradation via the cytosolic proteasome[J]. Virology, 2007, 369(1): 69-77. DOI: 10.1016/j.virol.2007.06.048. [39] LAZAR C, MACOVEI A, PETRESCU S, et al. Activation of ERAD pathway by human hepatitis B virus modulates viral and subviral particle production[J]. PLoS One, 2012, 7(3): e34169. DOI: 10.1371/journal.pone.0034169. [40] AL-MAHTAB M, BAZINET M, VAILLANT A. Safety and Efficacy of nucleic acid polymers in monotherapy and combined with immunotherapy in treatment-naive bangladeshi patients with HBeAg+ chronic hepatitis B infection[J]. PLoS One, 2016, 11(6): e0156667. DOI: 10.1371/journal.pone.0156667. [41] BAZINET M, PÂNTEA V, PLACINTA G, et al. Safety and efficacy of 48 weeks REP 2139 or REP 2165, tenofovir disoproxil, and pegylated interferon Alfa-2a in patients with chronic HBV infection naïve to nucleos(t)ide therapy[J]. Gastroenterology, 2020, 158(8): 2180-2194. DOI: 10.1053/j.gastro.2020.02.058. [42] ZHANG Z, ZHANG JY, WANG LF, et al. Immunopathogenesis and prognostic immune markers of chronic hepatitis B virus infection[J]. J Gastroenterol Hepatol, 2012, 27(2): 223-230. DOI: 10.1111/j.1440-1746.2011.06940.x. [43] DANDRI M, LOCARNINI S. New insight in the pathobiology of hepatitis B virus infection[J]. Gut, 2012, 61(Suppl 1): i6-i17. DOI: 10.1136/gutjnl-2012-302056. [44] AMIN OE, COLBECK EJ, DAFFIS S, et al. Therapeutic potential of TLR8 agonist GS-9688 (Selgantolimod) in chronic hepatitis B: Remodeling of antiviral and regulatory mediators[J]. Hepatology, 2021, 74(1): 55-71. DOI: 10.1002/hep.31695. [45] GANE E, DUNBAR PR, BROOKS A, et al. Efficacy and safety of 24 weeks treatment with oral TLR8 agonist, selgantolimod, in virally-suppressed adult patients with chronic hepatitis B: A phase 2 study[J]. J Hepatol, 2020, 73: S52. DOI: 10.1016/S0168-8278(20)30650-4. [46] YUEN MF, CHEN CY, LIU CJ, et al. GS-12-Ascending dose cohort study of inarigivir - A novel RIG I agonist in chronic HBV patients: Final results of the ACHIEVE trial[J]. J Hepatol, 2019, 70(1): e47-e48. DOI: 10.1016/S0618-8278(19)30084-2. [47] AGARWAL K, AFDHAL N, COFFIN C, et al. Liver toxicity in the Phase 2 Catalyst 206 trial of Inarigivir 400 mg daily added to a nucleoside in HBV EAg negative patients[J]. J Hepatol, 2020, 73: S125. DOI: 10.1016/S0168-8278(20)30766-2. [48] BOWEN DG, ZEN M, HOLZ L, et al. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity[J]. J Clin Invest, 2004, 114(5): 701-712. DOI: 10.1172/JCI21593. [49] BERTOLINO P, TRESCOL-BIÉMONT MC, RABOURDIN-COMBE C. Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival[J]. Eur J Immunol, 1998, 28(1): 221-236. DOI: 10.1002/(SICI)1521-4141(199801)28:01<221::AID-IMMU221>3.0.CO;2-F. [50] YOSHIDA O, FAZLE ASM, SANADA T, et al. Anti-HBS induction and HBsAg reduction by nasal administration of a therapeutic vaccine containing HBsAg and HBcAg (NASVAC) in patients with chronic HBV infection[J]. J Hepatol, 2020, 73: S887-S888. DOI: 10.1016/S0168-8278(20)32212-1. [51] LOK AS, PAN CQ, HAN SH, et al. Randomized phase Ⅱ study of GS-4774 as a therapeutic vaccine in virally suppressed patients with chronic hepatitis B[J]. J Hepatol, 2016, 65(3): 509-516. DOI: 10.1016/j.jhep.2016.05.016. [52] PAPADOPOULOS KP, HARB W, PEER CJ, et al. First-in-human phase I study of envafolimab, a novel subcutaneous single-domain anti-PD-L1 antibody, in patients with advanced solid tumors[J]. Oncologist, 2021, 26(9): e1514-e1525. DOI: 10.1002/onco.13817.