肠道菌群和色氨酸代谢在非酒精性脂肪性肝病中的作用
DOI: 10.3969/j.issn.1001-5256.2022.06.040
Role of gut microbiota and tryptophan metabolism in nonalcoholic fatty liver disease
-
摘要: 非酒精性脂肪性肝病(NAFLD)是多系统功能紊乱累及肝脏的表现,从单纯性脂肪变性到非酒精性脂肪性肝炎、肝纤维化、肝硬化和肝细胞癌。越来越多的研究揭示肠道菌群失调及代谢产物改变在NAFLD中的重要性。而肠道菌群产生色氨酸代谢产物具有改善肠道屏障功能、调节异常的糖脂代谢、减轻胰岛素抵抗及炎症反应等作用。本文旨在综述肠道菌群、色氨酸和其代谢物以及二者间相互作用对NAFLD的影响。Abstract: Nonalcoholic fatty liver disease (NAFLD) is a manifestation of multi-system dysfunction involving the liver, ranging from simple hepatic steatosis to nonalcoholic steatohepatitis, liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. An increasing number of studies have shown the importance of the changes in gut microbiota dysbiosis and its metabolites in NAFLD. Tryptophan and its derivatives produced by gut microbiota have the effects on improving intestinal barrier function, regulating abnormal glucose and lipid metabolism, and alleviating insulin resistance and inflammatory response. This article reviews gut microbiota, tryptophan and its metabolites, and the effect of their interaction on NAFLD.
-
图 1 色氨酸通过犬尿氨酸、吲哚、5-HT的代谢途径
注:黑色箭头线表示宿主途径,蓝色虚线箭头线表示微生物途径。TDO,色氨酸2,3-双加氧酶;KYNU,犬尿氨酸酶;KMO,犬尿酸-3-单加氧酶;KAT,犬尿氨酸氨基转移酶;KYNA,犬尿喹啉酸;3H-KYN,3-羟基犬尿氨酸;Xa,黄尿酸;3-HAA,3-羟基-2-氨基苯甲酸;NAD,烟酰胺腺嘌呤二核苷酸;TNA,色氨酸酶;ArAT,芳香族氨基酸转氨酶;IPYA,吲哚-3-丙酮酸;fldH,苯醛酸脱氢酶;ILA,吲哚乳酸;fldBC,苯乳酸脱水酶;IA,吲哚丙烯酸;IPA,吲哚丙酸;TMO,色氨酸2-单加氧酶;IAM,吲哚乙酰胺;IAA,吲哚-3-乙酸;IAld,吲哚-3-甲醛;IAAld,吲哚-3-乙醛;5-HTP,5-羟色氨酸;AAAD,芳香族氨基酸脱羧酶;AANAT,芳基烷基胺N-乙酰基转移酶;ASMT,乙酰血清素O-甲基转移酶;MAO,单胺类氧化酶;5-HIAA,5-羟基吲哚乙酸。
Figure 1. Tryptophan metabolism through the kynurenine, indole, and 5-HT pathways
-
[1] LIU QH, ZHAO Y, HU YY. Effect of diet on enterotype-related gut microbiota in nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2021, 37(4): 939-942. DOI: 10.3969/j.issn.1001-5256.2021.04.046.刘巧红, 赵瑜, 胡义扬. 饮食对非酒精性脂肪性肝病肠道微生物菌型相关菌群的影响[J]. 临床肝胆病杂志, 2021, 37(4): 939-942. DOI: 10.3969/j.issn.1001-5256.2021.04.046. [2] ESTES C, RAZAVI H, LOOMBA R, et al. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease[J]. Hepatology, 2018, 67(1): 123-133. DOI: 10.1002/hep.29466. [3] BUZZETTI E, PINZANI M, TSOCHATZIS EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65(8): 1038-1048. DOI: 10.1016/j.metabol.2015.12.012. [4] HOUTTU V, BOULUND U, GREFHORST A, et al. The role of the gut microbiome and exercise in non-alcoholic fatty liver disease[J]. Therap Adv Gastroenterol, 2020, 13: 1756284820941745. DOI: 10.1177/1756284820941745. [5] SHAN R, CHEN Y, YAO Z. Advance in research on the relationship between intestinal flora and non-alcoholic fatty liver disease[J]. Chin J Microecol, 2019, 31(7): 841-843. DOI: 10.13381/j.cnki.cjm.201907021.单蕊, 陈燕, 姚政. 肠道菌群与非酒精性脂肪肝病相关性研究进展[J]. 中国微生态学杂志, 2019, 31(7): 841-843. DOI: 10.13381/j.cnki.cjm.201907021. [6] MOUZAKI M, COMELLI EM, ARENDT BM, et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease[J]. Hepatology, 2013, 58(1): 120-127. DOI: 10.1002/hep.26319. [7] WONG VW, TSE CH, LAM TT, et al. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis-a longitudinal study[J]. PLoS One, 2013, 8(4): e62885. DOI: 10.1371/journal.pone.0062885. [8] BASTIAN WP, HASAN I, LESMANA C, et al. Gut microbiota profiles in nonalcoholic fatty liver disease and its possible impact on disease progression evaluated with transient elastography: Lesson learnt from 60 cases[J]. Case Rep Gastroenterol, 2019, 13(1): 125-133. DOI: 10.1159/000498946. [9] SOBHONSLIDSUK A, CHANPRASERTYOTHIN S, PONGRUJIKORN T, et al. The association of gut microbiota with nonalcoholic steatohepatitis in Thais[J]. Biomed Res Int, 2018, 2018: 9340316. DOI: 10.1155/2018/9340316. [10] ZHU L, BAKER SS, GILL C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH[J]. Hepatology, 2013, 57(2): 601-609. DOI: 10.1002/hep.26093. [11] LOOMBA R, SEGURITAN V, LI W, et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease[J]. Cell Metab, 2017, 25(5): 1054-1062.e5. DOI: 10.1016/j.cmet.2019.08.002. [12] ADOLPH TE, GRANDER C, MOSCHEN AR, et al. Liver-microbiome axis in health and disease[J]. Trends Immunol, 2018, 39(9): 712-723. DOI: 10.1016/j.it.2018.05.002. [13] QIAO B, ZHOU Y, MA WJ, et al. Intestinal microflora imbalance in non-alcoholic fatty liver disease[J/CD]. Chin J Liver Dis (Electronic Version), 2020, 12(4): 29-33. DOI: 10.3969/j.issn.1674-7380.2020.04.005.乔兵, 周永, 马文洁, 等. 肠道菌群失调在非酒精性脂肪性肝病中研究进展[J/CD]. 中国肝脏病杂志(电子版), 2020, 12(4): 29-33. DOI: 10.3969/j.issn.1674-7380.2020.04.005. [14] OTHMAN M, AGVERO R, LIN HC. Alterations in intestinal microbial flora and human disease[J]. Curr Opin Gastroenterol, 2008, 24(1): 11-16. DOI: 10.1097/MOG.0b013e3282f2b0d7. [15] RITZE Y, BÁRDOS G, HUBERT A, et al. Effect of tryptophan supplementation on diet-induced non-alcoholic fatty liver disease in mice[J]. Br J Nutr, 2014, 112(1): 1-7. DOI: 10.1017/S0007114514000440. [16] ZHANG X, COKER OO, CHU ES, et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites[J]. Gut, 2021, 70(4): 761-774. DOI: 10.1136/gutjnl-2019-319664. [17] CHEN WJ, FU Y, WANG ZL. The effect of berberine combined with escitalopram in the treatment of sleep disturbance in senile depression and its effect on serum serotonin level[J]. Chin J Gerontol, 2020, 40(13): 2827-2829. DOI: 10.3969/j.issn.1005-9202.2020.13.046.陈韦伽, 付裕, 王中莉. 小檗碱联合艾司西酞普兰治疗老年抑郁症睡眠障碍的效果及对血清5-羟色胺水平的影响[J]. 中国老年学杂志, 2020, 40(13): 2827-2829. DOI: 10.3969/j.issn.1005-9202.2020.13.046. [18] CHANG CM, HSIEH MS, YANG TC, et al. Selective serotonin reuptake inhibitors and the risk of hepatocellular carcinoma in hepatitis B virus-infected patients[J]. Cancer Manag Res, 2017, 9: 709-720. DOI: 10.2147/CMAR.S148097. [19] MA L, LI H, HU J, et al. Indole alleviates diet-induced hepatic steatosis and inflammation in a manner involving myeloid cell 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3[J]. Hepatology, 2020, 72(4): 1191-1203. DOI: 10.1002/hep.31115. [20] ROAGER HM, LICHT TR. Microbial tryptophan catabolites in health and disease[J]. Nat Commun, 2018, 9(1): 3294. DOI: 10.1038/s41467-018-05470-4. [21] YOUNOSSI Z, TACKE F, ARRESE M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Hepatology, 2019, 69(6): 2672-2682. DOI: 10.1002/hep.30251. [22] SMITH T. A modification of the method for determining the production of indol by bacteria[J]. J Exp Med, 1897, 2(5): 543-547. DOI: 10.1084/jem.2.5.543. [23] YANO JM, YU K, DONALDSON GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161(2): 264-276. DOI: 10.1016/j.cell.2015.02.047. [24] LAURANS L, VENTECLEF N, HADDAD Y, et al. Genetic deficiency of indoleamine 2, 3-dioxygenase promotes gut microbiota-mediated metabolic health[J]. Nat Med, 2018, 24(8): 1113-1120. DOI: 10.1038/s41591-018-0060-4. [25] SAKURAI T, ODAMAKI T, XIAO JZ. Production of indole-3-lactic acid by bifidobacterium strains isolated fromhuman infants[J]. Microorganisms, 2019, 7(9): 340. DOI: 10.3390/microorganisms7090340. [26] LEE JH, LEE J. Indole as an intercellular signal in microbial communities[J]. FEMS Microbiol Rev, 2010, 34(4): 426-444. DOI: 10.1111/j.1574-6976.2009.00204.x. [27] CHEN H, FINK GR. Feedback control of morphogenesis in fungi by aromatic alcohols[J]. Genes Dev, 2006, 20(9): 1150-1161. DOI: 10.1101/gad.1411806. [28] TILG H, ZMORA N, ADOLPH TE, et al. The intestinal microbiota fuelling metabolic inflammation[J]. Nat Rev Immunol, 2020, 20(1): 40-54. DOI: 10.1038/s41577-019-0198-4. [29] ZELANTE T, IANNITTI RG, CUNHA C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22[J]. Immunity, 2013, 39(2): 372-385. DOI: 10.1016/j.immuni.2013.08.003. [30] TAKAMURA T, HARAMA D, FUKUMOTO S, et al. Lactobacillus bulgaricus OLL1181 activates the aryl hydrocarbon receptor pathway and inhibits colitis[J]. Immunol Cell Biol, 2011, 89(7): 817-822. DOI: 10.1038/icb.2010.165. [31] CERVANTES-BARRAGAN L, CHAI JN, TIANERO MD, et al. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells[J]. Science, 2017, 357(6353): 806-810. DOI: 10.1126/science.aah5825. [32] RAI RP, LIU Y, IYER SS, et al. Blocking integrin α4β7-mediated CD4 T cell recruitment to the intestine and liver protects mice from western diet-induced non-alcoholic steatohepatitis[J]. J Hepatol, 2020, 73(5): 1013-1022. DOI: 10.1016/j.jhep.2020.05.047. [33] WILCK N, MATUS MG, KEARNEY SM, et al. Salt-responsive gut commensal modulates TH17 axis and disease[J]. Nature, 2017, 551(7682): 585-589. DOI: 10.1038/nature24628. [34] SHARPTON SR, SCHNABL B, KNIGHT R, et al. Current concepts, opportunities, and challenges of gut microbiome-based personalized medicine in nonalcoholic fatty liver disease[J]. Cell Metab, 2021, 33(1): 21-32. DOI: 10.1016/j.cmet.2020.11.010. [35] SHAJIB MS, BARANOV A, KHAN WI. Diverse effects of gut-derived serotonin in intestinal inflammation[J]. ACS Chem Neurosci, 2017, 8(5): 920-931. DOI: 10.1021/acschemneuro.6b00414. [36] ZHANG J, ZHU S, MA N, et al. Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: A therapeutic target to control intestinal inflammation[J]. Med Res Rev, 2021, 41(2): 1061-1088. DOI: 10.1002/med.21752. [37] WLODARSKA M, LUO C, KOLDE R, et al. Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation[J]. Cell Host Microbe, 2017, 22(1): 25-37. DOI: 10.1016/j.chom.2017.06.007. [38] HOU Q, YE L, LIU H, et al. Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22[J]. Cell Death Differ, 2018, 25(9): 1657-1670. DOI: 10.1038/s41418-018-0070-2. [39] NI Y, NI L, ZHUGE F, et al. The gut microbiota and its metabolites, novel targets for treating and preventing non-alcoholic fatty liver disease[J]. Mol Nutr Food Res, 2020, 64(17): e2000375. DOI: 10.1002/mnfr.202000375. [40] BANSAL T, ALANIZ RC, WOOD TK, et al. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation[J]. Proc Natl Acad Sci U S A, 2010, 107(1): 228-233. DOI: 10.1073/pnas.0906112107. [41] SMITH BK, MARCINKO K, DESJARDINS EM, et al. Treatment of nonalcoholic fatty liver disease: role of AMPK[J]. Am J Physiol Endocrinol Metab, 2016, 311(4): e730-e740. DOI: 10.1152/ajpendo.00225.2016. [42] de MELLO VD, PAANANEN J, LINDSTRÖM J, et al. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study[J]. Sci Rep, 2017, 7: 46337. DOI: 10.1038/srep46337. [43] TARANTINO G, BALSANO C. Gastrointestinal peptides and nonalcoholic fatty liver disease[J]. Curr Opin Endocrinol Diabetes Obes, 2020, 27(1): 11-15. DOI: 10.1097/MED.0000000000000514. [44] MACIA L, TAN J, VIEIRA AT, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome[J]. Nat Commun, 2015, 6: 6734. DOI: 10.1038/ncomms7734. [45] BLASLOV K, BULUM T, ZIBAR K, et al. Incretin based therapies: A novel treatment approach for non-alcoholic fatty liver disease[J]. World J Gastroenterol, 2014, 20(23): 7356-7365. DOI: 10.3748/wjg.v20.i23.7356. [46] VOIGT JP, FINK H. Serotonin controlling feeding and satiety[J]. Behav Brain Res, 2015, 277: 14-31. DOI: 10.1016/j.bbr.2014.08.065. [47] ARON-WISNEWSKY J, WARMBRUNN MV, NIEUWDORP M, et al. Metabolism and metabolic disorders and the microbiome: The intestinal microbiota associated with obesity, lipid metabolism, and metabolic health-pathophysiology and therapeutic strategies[J]. Gastroenterology, 2021, 160(2): 573-599. DOI: 10.1053/j.gastro.2020.10.057. [48] HWANG SB, LEE BH. Anti-obesity and antidiabetic effects of nelumbinis semen powder in high-fat diet-induced obese C57BL/6 mice[J]. Nutrients, 2020, 12(11): 3576. DOI: 10.3390/nu12113576. [49] SCHWENGER K, BOLZON CM, LI C, et al. Non-alcoholic fatty liver disease and obesity: the role of the gut bacteria[J]. Eur J Nutr, 2019, 58(5): 1771-1784. DOI: 10.1007/s00394-018-1844-5. [50] BEAUMONT M, NEYRINCK AM, OLIVARES M, et al. The gut microbiota metabolite indole alleviates liver inflammation in mice[J]. FASEB J, 2018, 32(12): fj201800544. DOI: 10.1096/fj.201800544. [51] JI Y, GAO Y, CHEN H, et al. Indole-3-acetic acid alleviates nonalcoholic fatty liver disease in mice via attenuation of hepatic lipogenesis, and oxidative and inflammatory stress[J]. Nutrients, 2019, 11(9): 2062. DOI: 10.3390/nu11092062.