土鳖虫调控黏结合蛋白聚糖3改善非酒精性脂肪性肝炎的作用机制
DOI: 10.3969/j.issn.1001-5256.2022.07.012
Mechanism of action of Eupolyphaga steleophaga in improving nonalcoholic steatohepatitis by regulating syndecan 3
-
摘要:
目的 探讨土鳖虫调控黏结合蛋白聚糖3(SDC3)对胆碱缺乏(CDAA)诱导的非酒精性脂肪性肝炎的作用及其机制。 方法 18只雄性C57BL/6小鼠随机分为胆碱充足(CSAA)组、CDAA组和胆碱缺乏加土鳖虫(CDAA+T)组。造模第12周开始,CDAA+T组小鼠给予0.108 g/kg土鳖虫(相当于成人用量10倍量)灌胃,CSAA、CDAA组以等体积生理盐水灌胃,18周末取血清和肝组织,检测小鼠肝功能、TC和TG,观测肝组织病理形态学。实时定量PCR检测转化生长因子(TGF)β1、α-平滑肌肌动蛋白(α-SMA)、Ⅰ型胶原(Col1α1)、SDC3 mRNA表达;检测SDC3在人和小鼠原代肝细胞、肝星状细胞(HSC)、内皮细胞和Kupffer细胞中的表达,应用Si-RNA沉默SDC3,检测SDC3在HSC活化中的作用。蛋白免疫印迹法检测SDC3蛋白表达。计量资料多组间比较采用单因素方差分析, 组内进一步两两比较采用SNK或LSD-t检验。 结果 与CSAA组相比,CDAA组肝功能(ALT、AST)、血清和肝脏TC、TG水平显著升高(P值均<0.01),CDAA+T组小鼠血清ALT、AST、TC、TG水平较CDAA组均显著下降(P值均<0.05)。HE染色显示CDAA组脂肪变明显,炎症细胞浸润增多,CDAA+T组炎症细胞浸润减轻;天狼星红染色显示CDAA组胶原增生显著增加,CDAA+T组胶原增生则减少;油红染色中CDAA组脂肪沉积明显,而CDAA+T组脂肪沉积减少。与CDAA组相比,CDAA+T组肝组织TGFβ、SDC3、α-SMA、COL1α1的mRNA表达和SDC3、α-SMA蛋白表达水平显著降低。免疫组化结果显示:SDC3在CSAA组中表达非常低,CDAA组中SDC3表达显著升高,主要在间质细胞,土鳖虫干预后表达显著降低(P值均<0.05)。PCR结果显示:人和小鼠肝脏各类型细胞中SDC3在HSC细胞表达最高(P值均<0.001)。体外培养LX2细胞,土鳖虫处理能显著降低TGFβ诱导的α-SMA、Col1α1上调,基因沉默SDC3后,土鳖虫不能抑制α-SMA、Col1α1升高(P值均<0.05)。 结论 土鳖虫显著改善CDAA诱导的非酒精性脂肪性肝炎,其机制可能通过调控HSC中SDC3表达实现的。 Abstract:Objective To investigate the effect of Eupolyphaga steleophaga on nonalcoholic steatohepatitis induced by choline-deficient L-amino acid-defined diet (CDAA) and its mechanism by regulating syndecan 3. Methods A total of 18 male C57BL/6 mice were randomly divided into choline-sufficient L-amino acid-defined diet (CSAA) group, CDAA group, and CDAA+Eupolyphaga steleophaga group (CDAA+T group). Since week 12 of modeling, the mice in the CDAA+T group were fed with Eupolyphaga steleophaga 0.108 g/kg (10 times that the dose for adults) by gavage, and those in the CSAA and CDAA groups were given an equal volume of normal saline by gavage. Serum and liver tissue samples were collected at the end of week 18 to measure liver function, total cholesterol (TC), and triglyceride (TG) and observe liver pathology. Quantitative real-time PCR was used to measure the mRNA expression levels of transforming growth factor β (TGFβ), α-smooth muscle actin (α-SMA), collagen type Ⅰ α1 (Col1α1), and SDC3; the mRNA expression of SDC3 was measured in human and mouse primary hepatocytes, hepatic stellate cells (HSCs), liver sinusoidal endothelial cells (LSECs), and Kupffer cells (KCs), and SDC3 was silenced by si-RNA to investigate the role of SDC3 in HSC activation. Western blotting was used to measure the protein expression of SDC3. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the SNK test or the least significant difference t-test was used for further comparison between two groups. Results Compared with the CSAA group, the CDAA group had significant increases in liver function parameters [alanine aminotransferase (ALT) and aspartate aminotransferase (AST)] and the levels of TC and TG in serum and the liver (all P < 0.05), and compared with the CDAA group, the CDAA+T group had significant reductions in the serum levels of ALT, AST, TC, and TG (all P < 0.05). HE staining showed that the CDAA group had marked hepatocyte steatosis and increased inflammatory cell infiltration, and the CDAA+T group had alleviated inflammatory cell infiltration; Sirius Red staining showed a significant increase in collagen hyperplasia in the CDAA group and a significant reduction in collagen hyperplasia in the CDAA+T group; oil red staining showed marked fat deposition in the CDAA group and a reduction in fat deposition in the CDAA+T group. Compared with the CDAA group, the CDAA+T group had significant reductions in the mRNA expression levels of TGFβ, SDC3, α-SMA, and COL1α1 and the protein expression levels of SDC3 and α-SMA. Immunohistochemistry showed a very low expression level of SDC3 in the CSAA group and a significant increase in the expression of SDC3 in the CDAA group, mainly in the interstitial cells, and there was a significant reduction after Eupolyphaga steleophaga intervention (all P < 0.05). PCR results showed the highest expression of SDC3 in HSCs of human and mouse liver (all P < 0.001). LX2 cells were cultured in vitro, and Eupolyphaga steleophaga treatment significantly reduced the upregulation of α-SMA and Col1α1 induced by TGFβ, while after SDC3 gene silencing, Eupolyphaga steleophaga did not inhibit the increases in α-SMA and Col1α1 (all P < 0.05). Conclusion Eupolyphaga steleophaga can significantly improve nonalcoholic steatohepatitis induced by CDAA, possibly by regulating the expression of SDC3 in HSCs. -
Key words:
- Eupolyphaga /
- Non-alcoholic Steatohepatitis /
- Syndecan-3
-
表 1 RT-PCR引物序列
Table 1. RT-PCR primer sequence
基因 上游 下游 18 s rRNA 5′-AGTCCCTGCCCTTTGTACACA-3′ 5′-CGATCCGAGGGCCTCACTA-3′ mα-SMA 5′-GTTCAGTGGTGCCTCTGTCA-3′ 5′-ACTGGGACGACATGGAAAAG-3′ mCol1α1 5′-TAGGCCATTGTGTATGCAGC-3′ 5′-ACATGTTCAGCTTTGTGGACC-3′ hSDC3 5′-GGCGCAGTGAGAACTTCG-3′ 5′-CCCCGAGTAGAGGTCATCCAG-3′ mSDC3 5′-GTCCAGCCAGAAAGCTACCAC-3′ 5′-CATCCCCTGTATGCCGGTG-3′ mTGFβ 5′-GCAAAGACCATCTGTCTCACA-3′ 5′-CTCCTCATCGTGTTGGTGG-3′ 注:m,小鼠引物;h,人源引物。 表 2 各组肝功能、血脂、肝脏脂肪表达及病理学改变
Table 2. Changes of liver function, serum lipids, liver fat expression and pathological in each group
指标 CSAA组 CDAA组 CDAA+T组 F值 P值 ALT(U/L) 11.56±2.93 72.79±7.061) 26.17±3.762) 253.68 <0.001 AST(U/L) 18.47±4.85 52.94±7.231) 26.43±2.732) 70.38 <0.001 血清TC(mmol/L) 2.95±0.64 7.97±1.221) 4.24±0.902) 45.21 <0.001 血清TG(mmol/L) 0.27±0.08 0.63±0.101) 0.35±0.072) 27.82 <0.001 肝脏TC(mmol/gprot) 1.57±0.45 2.49±0.671) 1.67±0.412) 5.70 <0.05 肝脏TG(mmol/gprot) 8.63±2.53 19.85±1.661) 16.03±1.492) 51.57 <0.001 NAS评分(分) 0.67±0.52 6.83±0.751) 4.50±1.052) 90.26 <0.001 天狼星红面积(%) 1.01±0.14 6.39±0.651) 3.17±0.262) 344.94 <0.001 油红面积(%) 0.83±0.12 7.90±1.441) 3.34±0.502) 131.45 <0.001 注:与CSAA组比较,1)P<0.01;与CDAA组比较,2)P<0.05。 表 3 纤维化指标和SDC3在CDAA模型中表达
Table 3. Expression of fibrosis index and SDC3 in CDAA model
指标 CSAA组 CDAA组 CDAA+T组 F值 P值 RT-PCR TGFβ mRNA 1.00±0.37 3.12±1.701) 1.50±0.292) 14.25 <0.001 Col1α1 mRNA 0.98±0.28 4.11±1.191) 0.81±0.232) 16.71 <0.001 SDC3 mRNA 1.00±0.57 5.88±1.831) 2.66±1.032) 46.69 <0.001 α-SMA mRNA 1.54±1.88 10.10±3.371) 3.53±0.862) 46.33 <0.001 免疫印迹 SDC3/β-Actin 1.00±0.19 2.52±0.431) 1.29±0.082) 15.92 <0.05 免疫组化 SDC3阳性面积(%) 0.09±0.03 0.40±0.051) 0.25±0.132) 134.37 <0.001 α-SMA阳性面积(%) 1.09±0.20 2.97±0.211) 1.78±0.232) 160.52 <0.001 注:与CSAA组比较,1)P<0.01;与CDAA组比较,2)P<0.01。 表 4 SDC3在肝脏各类细胞中表达
Table 4. Expression of SDC3 in various liver cells
组别 SDC3 mRNA相对表达量 人 鼠 Hepato 0.92±0.24 1.00±0.31 HSC 32.74±1.65 45.67±2.98 LSEC 21.27±1.75 29.47±3.97 Kupffer细胞 26.67±1.87 30.53±3.82 F值 490.38 282.88 P值 <0.001 <0.001 表 5 土鳖虫提取物抑制TGFβ诱导的LX2纤维化
Table 5. The LX2 fibrosis induced by TGFβ was inhibited by the extract of eupolyphaga
组别 α-SMA mRNA Col1α1 mRNA Si-NC-PBS-TGFβ组 1.00±0.11 1.00±0.04 Si-NC-T-TGFβ组 0.53±0.071) 0.34±0.021) Si-SDC3-PBS-TGFβ组 2.57±0.121) 1.79±0.361) Si-SDC3-T-TGFβ组 0.96±0.10 0.89±0.11 F值 157.98 19.69 P值 <0.001 <0.01 注:与Si-NC-PBS-TGFβ组比较,1)P<0.001。 -
[1] LI HS, CHEN SD, YING H, et al. Intervention effect of salidroside on liver fat synthesis and oxidation of non-alcoholic fatty liver in rats induced by high-fat diet[J]. China J Tradit Chin Med Pharma, 2017, 32(10): 4625-4628. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY201710084.htm李红山, 陈少东, 应豪, 等. 红景天苷对高脂饮食诱导的大鼠非酒精性脂肪肝肝脏脂肪合成和氧化环节的干预作用[J]. 中华中医药杂志, 2017, 32(10): 4625-4628. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY201710084.htm [2] SHI ZH, ZHENG D, GUO J, et al. Effects of scallion extract on PGC-1α and mitochondrial biosynthesis in nonalcoholic fatty liver model rats[J]. Lishizhen Med Mater Med Res, 2018, 29(10): 2320-2322. DOI: 10.3969/j.issn.1008-0805.2018.10.005.时昭红, 郑丁, 郭洁, 等. 葱白提取物对非酒精性脂肪肝模型大鼠PGC-1α和线粒体生物合成的影响[J]. 时珍国医国药, 2018, 29(10): 2320-2322. DOI: 10.3969/j.issn.1008-0805.2018.10.005. [3] LIU C, YUAN X, TAO L, et al. Xia-yu-xue decoction (XYXD) reduces carbon tetrachloride (CCl4)-induced liver fibrosis through inhibition hepatic stellate cell activation by targeting NF-κB and TGF-β1 signaling pathways[J]. BMC Complement Altern Med, 2015, 15: 201. DOI: 10.1186/s12906-015-0733-1. [4] LIU C, CAI J, CHENG Z, et al. Xiayuxue decoction reduces renal injury by promoting macrophage apoptosis in hepatic cirrhotic rats[J]. Genet Mol Res, 2015, 14(3): 10760-10773. DOI: 10.4238/2015.September.9.15. [5] WU L, ZHANG J, MA WT, et al. Xiayuxue Decoction inhibits methionine-choline-deficient-induced nonalcoholic steatohepatitis in mice[J/CD]. Chin J Liver Dis (Electronic Version), 2018, 10(3): 8. DOI: 10.3969/j.issn.1674-7380.2018.03.009.吴柳, 张洁, 马文婷, 等. 下瘀血汤对胆碱蛋氨酸缺乏诱导的小鼠非酒精性脂肪性肝炎的抑制作用[J/CD]. 中国肝脏病杂志(电子版), 2018, 10(3): 8. DOI: 10.3969/j.issn.1674-7380.2018.03.009. [6] WU L, YANG GY, ZHANG J, et al. Xiayuxue Decoction improved HFD-induced-nonalcoholic steatohepatitis mice by down-regulating NLRP3[J]. Chin J Integr Trad West Med, 2020, 40(10): 7. DOI: 10.7661/j.cjim.20200904.336.吴柳, 杨广越, 张洁, 等. 下瘀血汤下调NLRP3改善高脂饮食诱导小鼠非酒精性脂肪性肝炎[J]. 中国中西医结合杂志, 2020, 40(10): 7. DOI: 10.7661/j.cjim.20200904.336. [7] XIE YC, HU GX, PENG YZ, et al. Clinical effect of Dahuang Zhechong capsules combined with entecavir in treatment of chronic hepatitis B patients with liver fibrosis[J]. J Clin Hepatol, 2016, 32(8): 1502-1507. DOI: 10.3969/j.issn.1001-5256.2016.08.014.谢永财, 胡国信, 彭雁忠, 等. 大黄蟅虫胶囊联合恩替卡韦治疗慢性乙型肝炎肝纤维化的效果观察[J]. 临床肝胆病杂志, 2016, 32(8): 1502-1507. DOI: 10.3969/j.issn.1001-5256.2016.08.014. [8] CHEN SL, CHEN DX, DU GL. Experimental study of Xiayuxue Decoction component compatibility aganist immunity hepatic fibrosis rat model[J]. Lishizhen Med Mater Med Res, 2013, 24(6): 3. DOI: 10.3969/j.issn.1008-0805.2013.06.047陈少丽, 陈德兴, 都广礼. 下瘀血汤组分配伍抗免疫性肝纤维化大鼠模型的实验研究[J]. 时珍国医国药, 2013, 24(6): 3. DOI: 10.3969/j.issn.1008-0805.2013.06.047. [9] REIZES O, LINCECUM J, WANG Z, et al. Transgenic expression of syndecan-1 uncovers a physiological control of feeding behavior by syndecan-3[J]. Cell, 2001, 106(1): 105-116. DOI: 10.1016/s0092-8674(01)00415-9. [10] STRADER AD, REIZES O, WOODS SC, et al. Mice lacking the syndecan-3 gene are resistant to diet-induced obesity[J]. J Clin Invest, 2004, 114(9): 1354-1360. DOI: 10.1172/JCI20631. [11] TAO L, MA W, WU L, et al. Glial cell line-derived neurotrophic factor (GDNF) mediates hepatic stellate cell activation via ALK5/Smad signalling[J]. Gut, 2019, 68(12): 2214-2227. DOI: 10.1136/gutjnl-2018-317872. [12] ZHANG W, YANG GY, SHEN DX, et al. Mechanism of action of Xiayuxue decoction in inhibiting liver fibrosis by regulating glial cell line-derived neurotrophic factor[J]. J Clin Hepatol, 2021, 37(3): 575-581. DOI: 10.3969/j.issn.1001-5256.2021.03.015.张玮, 杨广越, 沈东晓, 等. 下瘀血汤抑制胶质细胞源性神经营养因子抗肝纤维化的作用机制[J]. 临床肝胆病杂志, 2021, 37(3): 575-581. DOI: 10.3969/j.issn.1001-5256.2021.03.015. [13] LIU XL, YANG GY, ZHANG W, et al. Therapeutic effect of Taohong Siwu decoction on a mouse model of carbon tetrachloride-induced liver fibrosis and its mechanism[J]. J Clin Hepatol, 2021, 37(11): 2563-2568. DOI: 10.3969/j.issn.1001-5256.2021.11.016.刘旭凌, 杨广越, 张玮, 等. 桃红四物汤对CCl4诱导肝纤维化小鼠模型的干预作用及其机制[J]. 临床肝胆病杂志, 2021, 37(11): 2563-2568. DOI: 10.3969/j.issn.1001-5256.2021.11.016. [14] The Chinese National Workshop on Fatty Liver and Alcoholic Liver Disease for the Chinese Liver Disease Association. Guidelines for management of nonalcoholic fatty liver disease: an updated and revised edition[J]. J Mod Med Health, 2011, 27(5): 641-644. DOI: 10.3760/cma.j.issn.1007-3418.2011.03.002.中华医学会肝病学分会脂肪肝和酒精性肝病学组. 非酒精性脂肪性肝病诊疗指南(2010年修订版)[J]. 现代医药卫生, 2011, 27(5): 641-644. DOI: 10.3760/cma.j.issn.1007-3418.2011.03.002. [15] ZHENG PY, AN XQ, LIU JC. Role of angiopoietin-like proteins in the development of nonalcoholic fatty liver dis-ease[J]. J Clin Hepatol, 2021, 37(11) : 2680-2683. DOI: 10.3969/j.issn.1001-5256.2021.11.042.郑培玉, 安秀琴, 刘近春. 血管生成素样蛋白在非酒精性脂肪性肝病发展中的作用[J]. 临床肝胆病杂志, 2021, 37(11) : 2680-2683. DOI: 10.3969/j.issn.1001-5256.2021.11.042. [16] MANNE V, HANDA P, KOWDLEY KV. Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis[J]. Clin Liver Dis, 2018, 22(1): 23-37. DOI: 10.1016/j.cld.2017.08.007. [17] LAN T, HU Y, HU F, et al. Hepatocyte glutathione S-transferase mu 2 prevents non-alcoholic steatohepatitis by suppressing ASK1 signaling[J]. J Hepatol, 2022, 76(2): 407-419. DOI: 10.1016/j.jhep.2021.09.040. [18] REPETTO MG, OSSANI G, MONSERRAT AJ, et al. Oxidative damage: the biochemical mechanism of cellular injury and necrosis in choline deficiency[J]. Exp Mol Pathol, 2010, 88(1): 143-149. DOI: 10.1016/j.yexmp.2009.11.002. [19] VETELÄINEN R, van VLIET A, van GULIK TM. Essential pathogenic and metabolic differences in steatosis induced by choline or methione-choline deficient diets in a rat model[J]. J Gastroenterol Hepatol, 2007, 22(9): 1526-1533. DOI: 10.1111/j.1440-1746.2006.04701.x. [20] ZHOU Q, SU J, JI MY. Progress in the treatment of nonalcoholic fatty liver disease[J]. China Med Herald, 2020, 17(6): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202006008.htm周谦, 苏娟, 季梦遥. 非酒精性脂肪性肝病的治疗研究进展[J]. 中国医药导报, 2020, 17(6): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202006008.htm [21] DONG PP, ZHANG JY, WEI YL, et al. Pharmacokinetics and pharmacodynamics of bioactive peptide LL8 from Steleophaga plancyi in rats[J]. Chin Tradit Herb Drug, 2021, 52(15): 4607-4613. DOI: 10.7501/j.issn.0253-2670.2021.15.019.董萍萍, 张加余, 魏永利, 等. 土鳖虫活性肽LL8在大鼠体内的药动学及药效学研究[J]. 中草药, 2021, 52(15): 4607-4613. DOI: 10.7501/j.issn.0253-2670.2021.15.019.