1型肝肾综合征患者90天预后危险因素分析及预测模型构建
DOI: 10.3969/j.issn.1001-5256.2022.07.019
Risk factors for the 90-day prognosis of patients with type I hepatorenal syndrome and establishment of a predictive model
-
摘要:
目的 探讨影响失代偿期肝硬化合并1型肝肾综合征(HRS)患者90 d预后的相关危险因素。 方法 回顾性收集北京地坛医院2008年10月—2018年10月299例失代偿期肝硬化合并1型HRS的住院患者的临床资料,按照患者90 d的预后情况分为生存组(n=135)和死亡组(n=164)。符合正态分布的计量资料两组间比较用t检验,非正态分布的计量资料两组间比较采用Mann-Whitney U检验;计数资料两组间比较用χ2检验。采用多因素二元logistic回归分析影响HRS患者90 d预后的因素,绘制不同因素受试者工作特征曲线(ROC曲线)。 结果 单因素分析显示,两组间终末期肝病模型(MELD)评分、Child-Turcotte-Pugh (CTP)评分、肝性脑病、血清钠(Na)、血肌酐(SCr)、血尿素氮(BUN)、尿酸(UA)、ALT、AST、TBil、Alb、胆碱酯酶(ChE)、WBC、中性粒细胞(NE)、中性粒细胞与淋巴细胞比值(NLR)、红细胞(RBC)、红细胞分布宽度(RDW)、PLT、国际标准化比值(INR)比较,差异均有统计学意义(P值均<0.05)。logistic多因素分析发现,Na、BUN、RDW、INR是失代偿期肝硬化合并HRS患者90 d预后不良的独立影响因素[OR(95%CI)分别为0.918(0.880~0.957)、1.077(1.029~1.127)、1.019(1.005~1.032)、3.478(2.096~5.771),P值均<0.05]。针对以上4个因素建立预测模型HRS-D,绘制各个因素的ROC曲线并计算曲线下面积,HRS-D的ROC曲线下面积为0.813(95%CI:0.762~0.864),诊断界值为-1.264,灵敏度为76.50%,特异度为72.50%。HRS-D和MELD相比,差异有统计学意义(Z=3.804,P<0.001),HRS-D评分与CTP评分、CTP评分与MELD评分相比,差异均无统计学意义(P值均>0.05)。 结论 Na、BUN、RDW、INR是失代偿期肝硬化合并1型HRS患者90 d预后不良的独立影响因素,据此建立的预测模型可以较好预测患者的90 d预后情况。 Abstract:Objective To investigate the risk factors for the 90-day prognosis of patients with decompensated liver cirrhosis and type I hepatorenal syndrome (HRS). Methods A retrospective analysis was performed for the clinical data of 299 patients with decompensated liver cirrhosis and type I HRS who were hospitalized in Beijing Ditan Hospital from October 2008 to October 2018, and according to the 90-day prognosis, they were divided into survival group with 135 patients and death group with 164 patients. The t-test was used for comparison of normally distributed continuous data between groups, and the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between groups; the chi-square test was used for comparison of categorical data between groups. A multivariate binary logistic regression analysis was used to investigate the influencing factors for 90-day prognosis, and the receiver operating characteristic (ROC) curve was plotted for each factor. Results The univariate analysis showed that there were significant differences between the two groups in Model for End-Stage Liver Disease (MELD) score, Child-Turcotte-Pugh (CTP) score, hepatic encephalopathy, serum Na, serum creatinine (Cr), blood urea nitrogen (BUN), uric acid (UA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBil), albumin (Alb), cholinesterase (CHE), white blood cell count (WBC), neutrophil (NE), neutrophil-to-lymphocyte ratio (NLR), red blood cell count (RBC), red blood cell distribution width (RDW), platelet count (PLT), and international normalized ratio (INR) (P < 0.05). The multivariate logistic regression analysis showed that Na (odds ratio [OR]=0.918, 95% confidence interval [CI]: 0.880-0.957, P < 0.05), BUN (OR=1.077, 95% CI: 1.029-1.127, P < 0.05), RDW (OR=1.019, 95% CI: 1.005-1.032, P < 0.05), and INR (OR=3.478, 95% CI: 2.096-5.771, P < 0.05) were independent influencing factors for poor 90-day prognosis in patients with decompensated liver cirrhosis and type I HRS. A predictive model, HRS-D, was established using the four factors above, and the ROC curves were plotted for each factor to calculate the area under the ROC curve (AUC), which showed that HRS-D had an AUC of 0.813 (95% CI: 0.762-0.864), with a sensitivity of 76.50% and a specificity of 72.50% at the diagnostic cut-off value of -1.264. There was a significant difference between HRS-D score and MELD score (Z=3.804, P < 0.001), while there was no significant difference between HRS-D score and CTP score and between CTP score and MELD score (both P > 0.05). Conclusion Na, BUN, RDW, and INR are independent influencing factors for poor 90-day prognosis in patients with decompensated liver cirrhosis and type I HRS, and the predictive model based on these indices can better predict the 90-day prognosis of HRS patients. -
Key words:
- Hepatorenal Syndrome /
- Liver Cirrhosis /
- Prognosis /
- Risk Factors
-
表 1 HRS患者的基线特征
Table 1. Baseline characteristics of patients with HRS
指标 生存组(n=135) 死亡组(n=164) 统计值 P值 年龄(岁) 54±12 54±13 t=0.168 0.867 男/女(例) 105/30 127/37 χ2=0.005 0.944 慢性乙型肝炎[例(%)] 53(39.3) 63(38.4) χ2=0.022 0.881 慢性丙型肝炎[例(%)] 7(5.2) 11(6.7) χ2=0.303 0.582 酒精性肝病[例(%)] 40(29.6) 44(26.8) χ2=0.287 0.607 免疫性肝病[例(%)] 9(6.7) 18(11.0) χ2=1.674 0.196 肝性脑病[例(%)] 16(11.9) 42(25.6) χ2=8.964 0.003 自发性腹膜炎[例(%)] 93(69.4) 117(71.8) χ2=0.200 0.654 消化道出血[例(%)] 25(18.5) 32(19.5) χ2=0.047 0.828 K(mmol/L) 4.34(3.86~4.82) 4.31(3.54~5.28) Z=-0.226 0.821 Na(mmol/L) 134.46±6.43 130.29±7.73 t=-5.085 <0.001 SCr(μmol/L) 143.00(137.50~177.00) 154.80(138.50~188.52) Z=-2.391 0.017 BUN(μmol/L) 13.59±5.36 17.86±8.76 t=5.191 <0.001 UA(mmol/L) 499.00(348.00~606.00) 414.00(243.25~577.78) Z=-3.204 0.001 ALT(U/L) 23.80(14.90~53.10) 43.60(24.18~103.48) Z=-5.731 <0.001 AST(U/L) 36.20(28.00~70.30) 68.80(38.30~150.30) Z=-4.124 <0.001 TBil(mmol/L) 38.00(20.70~106.6) 251.90(80.150~418.15) Z=-7.900 <0.001 Alb(g/L) 30.16±6.22 27.70±5.36 t=-5.074 <0.001 GGT(mmol/L) 41.40(18.20~73.60) 39.30(21.68~66.13) Z=-0.716 0.474 ChE(U/L) 2099(1548~3536) 1563(1064~2224) Z=-6.598 <0.001 WBC(×109/L) 5.96(4.20~8.69) 8.54(5.84~12.34) Z=-4.258 <0.001 NE(×109/L) 3.74(2.80~6.33) 6.45(4.23~10.53) Z=-4.694 <0.001 LY(×109/L) 0.96(0.62~1.57) 0.98(0.61~1.37) Z=-0.826 0.409 NLR 4.83(2.65~9.62) 7.94(4.57~13.98) Z=-4.843 <0.001 RBC(×1012/L) 2.93±0.79 2.53±0.93 t=-3.979 <0.001 Hb(g/L) 96.74±26.75 87.25±30.47 t=-3.198 <0.001 HCT(%) 28.50(24.42~33.90) 19.69(14.26~24.10) Z=-2.870 0.004 RDW(fL) 48.50(17.18~59.70) 56.75(20.39~63.48) Z=-4.139 <0.001 PLT(×109/L) 80.00(48.00~116.00) 67.00(35.28~99.50) Z=-2.802 0.005 INR 4.26(2.75~6.92) 6.68(4.39~13.05) Z=-7.438 <0.001 PT(s) 56.00(43.00~67.00) 34.50(21.90~47.65) Z=-8.226 <0.001 注:K,钾;LY,淋巴细胞计数。 表 2 logistic单因素回归分析
Table 2. logistic regression univariate analysis
变量 B值 OR(95%CI) P值 年龄 0.034 1.002(0.984~1.020) 0.866 肝性脑病 0.940 0.391(0.208~0.732) 0.035 CTP 0.493 1.637(1.434~1.868) <0.001 MELD 0.098 1.103(1.062~1.146) <0.001 Na(mmol/L) -0.082 1.637(1.434~1.868) <0.001 SCr(μmol/L) 0.008 1.008(1.002~1.014) <0.001 BUN(μmol/L) 0.090 1.094(1.053~1.138) <0.001 UA(mmol/L) -0.002 0.998(0.997~0.999) 0.003 ALT(U/L) 0.005 1.005(1.002~1.009) 0.006 AST(U/L) 0.005 1.005(1.002~1.008) 0.003 TBil(mmol/L) 0.005 1.005(1.004~1.007) <0.001 Alb(g/L) -0.105 0.900(0.862~0.940) <0.001 ChE(U/L) -0.001 0.999(0.999~1.000) <0.001 WBC(×109/L) 0.078 1.081(1.032~1.133) 0.001 NE(×109/L) 0.087 1.091(1.036~1.149) 0.001 NLR 0.047 1.071(1.031~1.111) <0.001 RBC(×1012/L) -0.528 0.590(0.448~0.778) <0.001 RDW(fL) 0.016 1.017(1.006~1.027) 0.002 PLT(×109/L) -0.006 0.994(0.989~0.999) 0.010 INR 1.384 3.989(2.449~6.497) <0.001 表 3 logistic多因素回归分析
Table 3. logistic regression multivariate analysis
变量 B值 SE Wald P值 OR(95%CI) Na(mmol/L) -0.086 0.021 15.999 <0.001 0.918(0.880~0.957) BUN(μmol/L) 0.074 0.023 10.071 0.002 1.077(1.029~1.127) RDW(fL) 0.018 0.007 7.712 0.005 1.019(1.005~1.032) INR 1.246 0.258 23.263 <0.001 3.478(2.096~5.771) 表 4 两组3种评分模型的比较
Table 4. Characteristics comparison of three scoring models in two group
模型 生存组(n=135) 死亡组(n=164) 统计值 P值 HRS-D -8.43±0.91 -7.38±1.40 t=-7.155 <0.001 MELD 30.67±5.59 35.41±8.07 t=5.864 <0.001 CTP 9(8~11) 12(11~13) Z=-8.119 <0.001 表 5 3种评分模型ROC曲线特点及比较
Table 5. Comparison of the characteristics of the ROC curves of three scoring models
模型 约登指数 cut-off值 灵敏度 特异度 HRS-D 0.49 -1.264 0.765 0.725 CTP 0.43 9.50 0.860 0.570 MELD 0.31 33.25 0.610 0.700 -
[1] WONG LP, BLACKLEY MP, ANDREONI KA, et al. Survival of liver transplant candidates with acute renal failure receiving renal replacement therapy[J]. Kidney Int, 2005, 68(1): 362-370. DOI: 10.1111/j.1523-1755.2005.00408.x. [2] ALLEGRETTI AS, ORTIZ G, WENGER J, et al. Prognosis of acute kidney injury and hepatorenal syndrome in patients with cirrhosis: A prospective cohort study[J]. Int J Nephrol, 2015, 2015: 108139. DOI: 10.1155/2015/108139. [3] Chinese Society of Hepatology and Chinese Society of Infectious Diseases, Chinese Medical Association. The guideline of prevention and treatment for chronic hepatitis B: A 2015 update[J]. J Clin Hepatol, 2015, 31(12): 1941-1960. DOI: 10.3969/j.issn.1001-5256.2015.12.002.中华医学会肝病学分会, 中华医学会感染病学分会. 慢性乙型肝炎防治指南(2015年更新版)[J]. 临床肝胆病杂志, 2015, 31(12): 1941-1960. DOI: 10.3969/j.issn.1001-5256.2015.12.002. [4] Chinese Society of Hepatology, Chinese Medical Association. Guidelines on the management of ascites and complications in cirrhosis Chinese Society of Hepatology[J]. J Clin Hepatol, 2017, 33(10): 1847-1863. DIO: 10.3969/j.issn.1001-5256.2017.10.003. DOI: 10.3969/j.issn.1001-5256.2017.10.003中华医学会肝病学分会. 肝硬化腹水及相关并发症的诊疗指南[J]. 临床肝胆病杂志, 2017, 33(10): 1847-1863. DOI: 10.3969/j.issn.1001-5256.2017.10.003. [5] YE YN, ZHANG ZQ, HE G, et al. Analysis of high-risk factors for hepatorenal syndrome in patients with hepatitis B-related acute-on-chronic liver failure[J]. Hainan Med J, 2019, 30(24): 3145-3149. DOI: 10.3969/j.issn.1003-6350.2019.24.004.叶一农, 张志侨, 何纲, 等. 乙型肝炎相关慢加急性肝衰竭患者发生肝肾综合征的高危因素分析[J]. 海南医学, 2019, 30(24): 3145-3149. DOI: 10.3969/j.issn.1003-6350.2019.24.004. [6] LIU PP, LIU J, YE WF. Relationship between Cys-C, hyponatremia, blood ammonia and hepatorenal syndrome[J]. Contemp Med, 2019, 25(19): 82-84. DOI: 10.3969/j.issn.1009-4393.2019.19.033.刘萍萍, 刘娟, 叶文峰. Cys-C、低钠血症、血氨与肝肾综合征的关系[J]. 当代医学, 2019, 25(19): 82-84. DOI: 10.3969/j.issn.1009-4393.2019.19.033. [7] MA Y, WANG XZ, YAN GW, et al. Effect of hyponatremia on prognosis of patients with decompensated hepatitis B cirrhosis[J]. Med Recapitulate, 2021, 27(4): 796-803, 808. DOI: 10.3969/j.issn.1006-2084.2021.04.032.马燕, 王晓忠, 延国威, 等. 低钠血症对乙肝肝硬化失代偿期患者预后的影响[J]. 医学综述, 2021, 27(4): 796-803, 808. DOI: 10.3969/j.issn.1006-2084.2021.04.032. [8] MA Y, WANG XZ, YAN GW, et al. The relationship between serum sodium, creatinine, cystatin C and the degree of renal damage in patients with hepatitis B liver cirrhosis and hyponatremia[J]. Med Inf, 2020, 33(19): 55-58. DOI: 10.3969/j.issn.1006-1959.2020.19.017.马燕, 王晓忠, 延国威, 等. 乙肝肝硬化低血钠症患者血清钠、肌酐以及胱抑素C与肾功能损害程度的关系[J]. 医学信息, 2020, 33(19): 55-58. DOI: 10.3969/j.issn.1006-1959.2020.19.017. [9] XU XY, DIAO ZL, SU JR. Reduction in estimated glomerular filtration rate in patients with elevated blood urea nitrogen but normal for any other markers of kid- ney damage[J]. J Clin Exp Med, 2017, 16(22): 2262-2264. DOI: 10.3969/j.issn.1671-4695.2017.22.025.徐小用, 刁宗礼, 苏建荣. 单纯血尿素氮升高患者肾小球滤过率下降趋势分析[J]. 临床和实验医学杂志, 2017, 16(22): 2262-2264. DOI: 10.3969/j.issn.1671-4695.2017.22.025. [10] BHUTTO AR, ABBASI A, ABRO AH. Correlation of hemoglobin A1c with red cell width distribution and other parameters of red blood cells in type Ⅱ diabetes mellitus[J]. Cureus, 2019, 11(8): e5533. DOI: 10.7759/cureus.5533. [11] BLASLOV K, KRULJAC I, MIROŠEVIĆ G, et al. The prognostic value of red blood cell characteristics on diabetic retinopathy development and progression in type 2 diabetes mellitus[J]. Clin Hemorheol Microcirc, 2019, 71(4): 475-481. DOI: 10.3233/CH-180422. [12] FAN JQ, FAN YQ, LI ZJ. Value of red blood cell distribution width in prognosis of acute kidney injury associated with sepsis[J]. Hainan Med J, 2014, 25(20): 3012-3014. DOI: 10.3969/j.issn.1003-6350.2014.20.1184.范金强, 范银强, 李振军. 红细胞体积分布宽度对脓毒症急性肾损伤患者预后的评估价值[J]. 海南医学, 2014, 25(20): 3012-3014. DOI: 10.3969/j.issn.1003-6350.2014.20.1184. [13] HSIEH YP, CHANG CC, KOR CT, et al. The predictive role of red cell distribution width in mortality among chronic kidney disease patients[J]. PLoS One, 2016, 11(12): e0162025. DOI: 10.1371/journal.pone.0162025. [14] WANG Z, HOU W, WANG KF, et al. Risk factors of 30 days readmission and 3 years mortality of patients with liver cirrhosis and ascites[J/CD]. Chin J Liver Dis (Electronic Version), 2021, 13(3): 16-24. DOI: 10.3969/j.issn.1674-7380.2021.03.003.王征, 侯维, 王克菲, 等. 肝硬化腹水患者30 d再住院和3年病死的危险因素分析[J/CD]. 中国肝脏病杂志(电子版), 2021, 13(3): 16-24. DOI: 10.3969/j.issn.1674-7380.2021.03.003.