中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

戊型肝炎病毒感染的免疫发病机制

李晓领 张青 王李安 郑娟娟 李海

引用本文:
Citation:

戊型肝炎病毒感染的免疫发病机制

DOI: 10.3969/j.issn.1001-5256.2022.07.032
基金项目: 

佑安肝病感染病专科医疗联盟科研基金 (LM202019);

天津市西青医院科联体基金项目 (XQYYKLT202006)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:李晓领负责资料分析,撰写文章; 张青、王李安、郑娟娟参与收集、分析资料; 李海负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    李海,15202265600@163.com

Research advances in the immune pathogenesis of hepatitis E virus infection

Research funding: 

Scientific Research Fund of YouAn Medical Alliance for the Liver and Infectious Diseases (LM202019);

The Medical Treatment Combination Fund Project of Tianjin Xiqing Hospital (XQYYKLT202006)

More Information
  • 摘要: 戊型肝炎大多是急性自限性的,但免疫功能低下患者(如实体器官移植受者、HIV感染和血液疾病)会出现慢性感染。免疫反应是决定戊型肝炎病毒(HEV)感染结局的关键因素,其中包括天然免疫和适应性免疫。通过细胞培养、动物模型和临床试验等多种研究,对HEV免疫发病机制的认识更加深入,这些为HEV新的抗病毒治疗和有效疫苗的开发提供了思路。本综述讨论了近年来有关HEV的免疫发病机制,并提出了对该疾病预防及治疗的展望。

     

  • 图  1  HEV感染与IFN应答的关系

    注:病毒感染后,被模式识别受体识别,产生IFN。IFN与其相应受体结合,导致STAT磷酸化,磷酸化的STAT与IRF9形成复合物,易位到细胞核中,通过基因转录,诱导ISG(RIG-1、IRF1、STAT1、STAT2、MDA5)表达,从而抑制病毒复制,这是通常的抗病毒反应。HEV在细胞内的基因及产物也可通过抑制STAT磷酸化等多处信号通路而阻止IFN应答,因此降低IFN抗病毒效应,有利于HEV在人体生存。

    Figure  1.  Relationship between HEV infection and interferon response

  • [1] European Association for the Study of the Liver. EASL clinical practice guidelines on hepatitis E virus infection[J]. J Hepatol, 2018, 68(6): 1256-1271. DOI: 10.1016/j.jhep.2018.03.005.
    [2] LIN S, ZHANG YJ. Advances in hepatitis E virus biology and pathogenesis[J]. Viruses, 2021, 13(2): 267. DOI: 10.3390/v13020267.
    [3] PÉREZ-GRACIA MT, SUAY-GARCÍA B, MATEOS-LINDEMANN ML. Hepatitis E and pregnancy: current state[J]. Rev Med Virol, 2017, 27(3): e1929. DOI: 10.1002/rmv.1929.
    [4] THAKUR V, RATHO RK, KUMAR S, et al. Viral hepatitis E and chronicity: A growing public health concern[J]. Front Microbiol, 2020, 11: 577339. DOI: 10.3389/fmicb.2020.577339.
    [5] LI Y, PEPPELENBOSCH MP. Hepatitis E virus and neurological manifestations[J]. J Neurol Sci, 2021, 423: 117388. DOI: 10.1016/j.jns.2021.117388.
    [6] PISCHKE S, HARTL J, PAS SD, et al. Hepatitis E virus: Infection beyond the liver[J]. J Hepatol, 2017, 66(5): 1082-1095. DOI: 10.1016/j.jhep.2016.11.016.
    [7] LHOMME S, MIGUERES M, ABRAVANEL F, et al. Hepatitis E virus: How it escapes host innate immunity[J]. Vaccines (Basel), 2020, 8(3) : 422. DOI: 10.3390/vaccines8030422.
    [8] WU J, HUANG F, LING Z, et al. Altered faecal microbiota on the expression of Th cells responses in the exacerbation of patients with hepatitis E infection[J]. J Viral Hepat, 2020, 27(11): 1243-1252. DOI: 10.1111/jvh.13344.
    [9] NAIR VP, ANANG S, SUBRAMANI C, et al. Endoplasmic reticulum stress induced synthesis of a novel viral factor mediates efficient replication of genotype-1 hepatitis E virus[J]. PLoS Pathog, 2016, 12(4): e1005521. DOI: 10.1371/journal.ppat.1005521.
    [10] YAMADA K, TAKAHASHI M, HOSHINO Y, et al. ORF3 protein of hepatitis E virus is essential for virion release from infected cells[J]. J Gen Virol, 2009, 90(Pt 8): 1880-1891. DOI: 10.1099/vir.O.010561-0.
    [11] WU J, CHEN ZJ. Innate immune sensing and signaling of cytosolic nucleic acids[J]. Annu Rev Immunol, 2014, 32: 461-88. DOI: 10.1146/annurev-immunol-032713-120156.
    [12] TAKEUCHI O, AKIRA S. Innate immunity to virus infection[J]. Immunol Rev, 2009, 227(1): 75-86. DOI: 10.1111/j.1600-065X.2008.00737.x.
    [13] WU J, LING B, GUO N, et al. Immunological manifestations of hepatitis E-associated acute and chronic liver failure and its regulatory mechanisms[J]. Front Med (Lausanne), 2021, 8: 725993. DOI: 10.3389/fmed.2021.725993.
    [14] SRIVASTAVA R, AGGARWAL R, BHAGAT MR, et al. Alterations in natural killer cells and natural killer T cells during acute viral hepatitis E[J]. J Viral Hepat, 2008, 15(12): 910-916. DOI: 10.1111/j.1365-2893.2008.01036.x.
    [15] TAKEUCHI O, AKIRA S. Pattern recognition receptors and inflammation[J]. Cell, 2010, 140(6): 805-820. DOI: 10.1016/j.cell.2010.01.022.
    [16] JENSEN S, THOMSEN AR. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion[J]. J Virol, 2012, 86(6): 2900-2910. DOI: 10.1128/JVI.05738-11.
    [17] DEVHARE PB, DESAI S, LOLE KS. Innate immune responses in human hepatocyte-derived cell lines alter genotype 1 hepatitis E virus replication efficiencies[J]. Sci Rep, 2016, 6: 26827. DOI: 10.1038/srep26827.
    [18] KAWAI T, AKIRA S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity[J]. Immunity, 2011, 34(5): 637-650. DOI: 10.1016/j.immuni.2011.05.006.
    [19] SYEDBASHA M, EGLI A. Interferon lambda: Modulating immunity in infectious diseases[J]. Front Immunol, 2017, 8: 119. DOI: 10.3389/fimmu.2017.00119.
    [20] NAN Y, WU C, ZHANG YJ. Interplay between janus kinase/signal transducer and activator of transcription signaling activated by type Ⅰ interferons and viral antagonism[J]. Front Immunol, 2017, 8: 1758. DOI: 10.3389/fimmu.2017.01758.
    [21] TODT D, FRANÇOIS C, ANGGAKUSUMA, et al. Antiviral activities of different interferon types and subtypes against hepatitis E virus replication[J]. Antimicrob Agents Chemother, 2016, 60(4): 2132-2139. DOI: 10.1128/AAC.02427-15.
    [22] SOORYANARAIN H, HEFFRON CL, MENG XJ. The U-rich untranslated region of the hepatitis E virus induces differential type Ⅰ and type Ⅲ interferon responses in a host cell-dependent manner[J]. mBio, 2020, 11(1) : e03103-19. DOI: 10.1128/mBio.03103-19.
    [23] MARION O, LHOMME S, NAYRAC M, et al. Hepatitis E virus replication in human intestinal cells[J]. Gut, 2020, 69(5): 901-910. DOI: 10.1136/gutjnl-2019-319004.
    [24] SCHNEIDER WM, CHEVILLOTTE MD, RICE CM. Interferon-stimulated genes: a complex web of host defenses[J]. Annu Rev Immunol, 2014, 32: 513-545. DOI: 10.1146/annurev-immunol-032713-120231.
    [25] MOAL V, TEXTORIS J, BEN AMARA A, et al. Chronic hepatitis E virus infection is specifically associated with an interferon-related transcriptional program[J]. J Infect Dis, 2013, 207(1): 125-132. DOI: 10.1093/infdis/jis632.
    [26] WANG W, YIN Y, XU L, et al. Unphosphorylated ISGF3 drives constitutive expression of interferon-stimulated genes to protect against viral infections[J]. Sci Signal, 2017, 10(476): eaah4248. DOI: 10.1126/scisignal.aah4248.
    [27] ZHOU X, XU L, WANG W, et al. Disparity of basal and therapeutically activated interferon signalling in constraining hepatitis E virus infection[J]. J Viral Hepat, 2016, 23(4): 294-304. DOI: 10.1111/jvh.12491.
    [28] XU L, WANG W, LI Y, et al. RIG-Ⅰ is a key antiviral interferon-stimulated gene against hepatitis E virus regardless of interferon production[J]. Hepatology, 2017, 65(6): 1823-1839. DOI: 10.1002/hep.29105.
    [29] XU L, ZHOU X, WANG W, et al. IFN regulatory factor 1 restricts hepatitis E virus replication by activating STAT1 to induce antiviral IFN-stimulated genes[J]. FASEB J, 2016, 30(10): 3352-3367. DOI: 10.1096/fj.201600356R.
    [30] LI Y, YU P, QU C, et al. MDA5 against enteric viruses through induction of interferon-like response partially via the JAK-STAT cascade[J]. Antiviral Res, 2020, 176: 104743. DOI: 10.1016/j.antiviral.2020.104743.
    [31] DEVHARE PB, CHATTERJEE SN, ARANKALLE VA, et al. Analysis of antiviral response in human epithelial cells infected with hepatitis E virus[J]. PLoS One, 2013, 8(5): e63793. DOI: 10.1371/journal.pone.0063793.
    [32] WANG W, XU L, BRANDSMA JH, et al. Convergent transcription of interferon-stimulated genes by TNF-α and IFN-α augments antiviral activity against HCV and HEV[J]. Sci Rep, 2016, 6: 25482. DOI: 10.1038/srep25482.
    [33] KUMAR A, DEVI SG, KAR P, et al. Association of cytokines in hepatitis E with pregnancy outcome[J]. Cytokine, 2014, 65(1): 95-104. DOI: 10.1016/j.cyto.2013.09.022.
    [34] XU J, WU F, TIAN D, et al. Open reading frame 3 of genotype 1 hepatitis E virus inhibits nuclear factor-kappa B signaling induced by tumor necrosis factor-α in human A549 lung epithelial cells[J]. PLoS One, 2014, 9(6): e100787. DOI: 10.1371/journal.pone.0100787.
    [35] LEI Q, LI L, ZHANG S, et al. HEV ORF3 downregulates TLR7 to inhibit the generation of type Ⅰ interferon via impairment of multiple signaling pathways[J]. Sci Rep, 2018, 8(1): 8585. DOI: 10.1038/s41598-018-26975-4.
    [36] LEI Q, LI L, HUANG W, et al. HEV ORF3 downregulatesCD14 and CD64 to impair macrophages phagocytosis through inhibiting JAK/STAT pathway[J]. J Med Virol, 2019, 91(6): 1112-1119. DOI: 10.1002/jmv.25400.
    [37] HE M, WANG M, HUANG Y, et al. The ORF3 protein of genotype 1 hepatitis E virus suppresses TLR3-induced NF-κB signaling via TRADD and RIP1[J]. Sci Rep, 2016, 6: 27597. DOI: 10.1038/srep27597.
    [38] TIAN Y, HUANG W, YANG J, et al. Systematic identification of hepatitis E virus ORF2 interactome reveals that TMEM134 engages in ORF2-mediated NF-κB pathway[J]. Virus Res, 2017, 228: 102-108. DOI: 10.1016/j.virusres.2016.11.027.
    [39] ZHU FC, HUANG SJ, WU T, et al. Epidemiology of zoonotic hepatitis E: a community-based surveillance study in a rural population in China[J]. PLoS One, 2014, 9(1): e87154. DOI: 10.1371/journal.pone.0087154.
    [40] KRAIN LJ, NELSON KE, LABRIQUE AB. Host immune status and response to hepatitis E virus infection[J]. Clin Microbiol Rev, 2014, 27(1): 139-165. DOI: 10.1128/CMR.00062-13.
    [41] HOOFNAGLE JH, NELSON KE, PURCELL RH. Hepatitis E[J]. N Engl J Med, 2012, 367(13): 1237-1244. DOI: 10.1056/NEJMra1204512.
    [42] KHUROO MS, KHUROO MS. Seroepidemiology of a second epidemic of hepatitis E in a population that had recorded first epidemic 30 years before and has been under surveillance since then[J]. Hepatol Int, 2010, 4(2): 494-499. DOI: 10.1007/s12072-009-9159-5.
    [43] TORRE P, AGLITTI A, MASARONE M, et al. Viral hepatitis: Milestones, unresolved issues, and future goals[J]. World J Gastroenterol, 2021, 27(28): 4603-4638. DOI: 10.3748/wjg.v27.i28.4603.
    [44] POSSAMAI LA, ANTONIADES CG, ANSTEE QM, et al. Role of monocytes and macrophages in experimental and human acute liver failure[J]. World J Gastroenterol, 2010, 16(15): 1811-1819. DOI: 10.3748/wjg.v16.i15.1811.
    [45] SHIN EC, SUNG PS, PARK SH. Immune responses and immunopathology in acute and chronic viral hepatitis[J]. Nat Rev Immunol, 2016, 16(8): 509-523. DOI: 10.1038/nri.2016.69.
    [46] HAKIM MS, SPAAN M, JANSSEN HL, et al. Inhibitory receptor molecules in chronic hepatitis B and C infections: novel targets for immunotherapy[J]. Rev Med Virol, 2014, 24(2): 125-138. DOI: 10.1002/rmv.1779.
    [47] CHEN S, ZHOU Z, WEI FX, et al. Modeling the long-term antibody response of a hepatitis E vaccine[J]. Vaccine, 2015, 33(33): 4124-4129. DOI: 10.1016/j.vaccine.2015.06.050.
    [48] SU YY, HUANG SJ, GUO M, et al. Persistence of antibodies acquired by natural hepatitis E virus infection and effects of vaccination[J]. Clin Microbiol Infect, 2017, 23(5): 336. e1-336. e4. DOI: 10.1016/j.cmi.2016.10.029
    [49] YU W, JI H, LONG F, et al. Inhibition of hepatitis E virus replication by zinc-finger antiviral Protein synergizes with IFN-β[J]. J Viral Hepat, 2021, 28(8): 1219-1229. DOI: 10.1111/jvh.13522.
    [50] SHRESTHA A, LAMA TK, GUPTA BP, et al. Hepatitis E virus outbreak in postearthquake Nepal: is a vaccine really needed[J]. J Viral Hepat, 2016, 23(6): 492. DOI: 10.1111/jvh.12505.
    [51] KUMAI T, FAN A, HARABUCHI Y, et al. Cancer immunotherapy: moving forward with peptide T cell vaccines[J]. Curr Opin Immunol, 2017, 47: 57-63. DOI: 10.1016/j.coi.2017.07.003.
    [52] MELSSEN M, SLINGLUFF CL Jr. Vaccines targeting helper T cells for cancer immunotherapy[J]. Curr Opin Immunol, 2017, 47: 85-92. DOI: 10.1016/j.coi.2017.07.004.
    [53] AL-AYOUBI J, BEHRENDT P, BREMER B, et al. Hepatitis E virus ORF 1 induces proliferative and functional T-cell responses in patients with ongoing and resolved hepatitis E[J]. Liver Int, 2018, 38(2): 266-277. DOI: 10.1111/liv.13521.
  • 加载中
图(1)
计量
  • 文章访问数:  616
  • HTML全文浏览量:  137
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-21
  • 录用日期:  2022-01-27
  • 出版日期:  2022-07-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回