肠道菌群在慢加急性肝衰竭中的意义
DOI: 10.3969/j.issn.1001-5256.2022.07.040
利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:王富春、毛小荣、李俊峰对文章的思路和设计有关键贡献,并参与修改文章关键内容;王富春、李子怡、张万洁均参与了文献检索及起草文章初稿。
-
摘要: 各种急性损伤因素作用于慢性肝病后,可导致病情急剧恶化,发展为慢加急性肝衰竭(ACLF)。肝病患者体内,肠道菌群毒素可通过门静脉或体循环至肝脏导致肝细胞死亡,此外,肠道菌群可通过多种机制发生移位,诱导感染、血管扩张和全身炎症反应发生,促使疾病进展为失代偿期肝硬化和ACLF,最终危及患者生命。本文梳理了近5年的相关研究成果,阐述肠道菌群在ACLF发生、发展、防治中的意义。肠道菌群及其代谢产物对肝病进展有着重大影响,因此有必要深入研究肠道菌群在ACLF病因学中的作用,为ACLF的诊断和治疗拓展新思路。Abstract: Various acute injury factors may act on chronic liver diseases and then lead to the rapid deterioration of disease conditions, which further develops into acute-on-chronic liver failure (ACLF). In patients with liver disease, gut microbiota toxins enter the liver through the portal vein or systemic circulation and thus lead to the death of hepatocytes; in addition, gut microbiota translocation occurs through various mechanisms, induces infection, vasodilation, and systemic inflammation, and then promotes disease progression to decompensated liver cirrhosis and ACLF, which ultimately endangers the life of patients. This article summarizes related research findings in the recent five years and elaborates on the significance of gut microbiota in the development, progression, prevention, and treatment of ACLF. Gut microbiota and its metabolites have a significant impact on the progression of liver disease, and therefore, it is necessary to conduct in-depth studies on the role of gut microbiota in the etiology of ACLF, in order to provide new ideas for the diagnosis and treatment of ACLF.
-
Key words:
- Acute-On-Chronic Liver Failure /
- Gastrointestinal Microbiome /
- Diagnosis /
- Therapeutics
-
[1] ARROYO V, MOREAU R, KAMATH PS, et al. Acute-on-chronic liver failure in cirrhosis[J]. Nat Rev Dis Primers, 2016, 2: 16041. DOI: 10.1038/nrdp.2016.41. [2] ARROYO V, MOREAU R, JALAN R. Acute-on-chronic liver failure[J]. N Engl J Med, 2020, 382(22): 2137-2145. DOI: 10.1056/NEJMra1914900. [3] FERNÁNDEZ J, ACEVEDO J, WIEST R, et al. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis[J]. Gut, 2018, 67(10): 1870-1880. DOI: 10.1136/gutjnl-2017-314240. [4] BAJAJ JS, REDDY KR, O'LEARY JG, et al. Serum levels of metabolites produced by intestinal microbes and lipid moieties independently associated with acute-on-chronic liver failure and death in patients with cirrhosis[J]. Gastroenterology, 2020, 159(5): 1715-1730. e12. DOI: 10.1053/j.gastro.2020.07.019. [5] TILG H, CANI PD, MAYER EA. Gut microbiome and liver diseases[J]. Gut, 2016, 65(12): 2035-2044. DOI: 10.1136/gutjnl-2016-312729. [6] ALBILLOS A, de GOTTARDI A, RESCIGNO M. The gut-liver axis in liver disease: Pathophysiological basis for therapy[J]. J Hepatol, 2020, 72(3): 558-577. DOI: 10.1016/j.jhep.2019.10.003. [7] TREBICKA J, AMOROS A, PITARCH C, et al. Addressing profiles of systemic inflammation across the different clinical phenotypes of acutely decompensated cirrhosis[J]. Front Immunol, 2019, 10: 476. DOI: 10.3389/fimmu.2019.00476. [8] TREBICKA J, FERNANDEZ J, PAPP M, et al. The PREDICT study uncovers three clinical courses of acutely decompensated cirrhosis that have distinct pathophysiology[J]. J Hepatol, 2020, 73(4): 842-854. DOI: 10.1016/j.jhep.2020.06.013. [9] MACDONALD S, ANDREOLA F, BACHTIGER P, et al. Cell death markers in patients with cirrhosis and acute decompensation[J]. Hepatology, 2018, 67(3): 989-1002. DOI: 10.1002/hep.29581. [10] MUÑOZ L, BORRERO MJ, U'BEDA M, et al. Intestinal immune dysregulation driven by dysbiosis promotes barrier disruption and bacterial translocation in rats with cirrhosis[J]. Hepatology, 2019, 70(3): 925-938. DOI: 10.1002/hep.30349. [11] WANG L, FOUTS DE, STÄRKEL P, et al. Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation[J]. Cell Host Microbe, 2016, 19(2): 227-239. DOI: 10.1016/j.chom.2016.01.003. [12] DUBINKINA VB, TYAKHT AV, ODINTSOVA VY, et al. Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease[J]. Microbiome, 2017, 5(1): 141. DOI: 10.1186/s40168-017-0359-2. [13] LLOPIS M, CASSARD AM, WRZOSEK L, et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease[J]. Gut, 2016, 65(5): 830-839. DOI: 10.1136/gutjnl-2015-310585. [14] CHEN Y, GUO J, QIAN G, et al. Gut dysbiosis in acute-on-chronic liver failure and its predictive value for mortality[J]. J Gastroenterol Hepatol, 2015, 30(9): 1429-1437. DOI: 10.1111/jgh.12932. [15] WANG K, ZHANG Z, MO ZS, et al. Gut microbiota as prognosis markers for patients with HBV-related acute-on-chronic liver failure[J]. Gut Microbes, 2021, 13(1): 1-15. DOI: 10.1080/19490976.2021.1921925. [16] YAO X, YU H, FAN G, et al. Impact of the gut microbiome on the progression of hepatitis b virus related acute-on-chronic liver failure[J]. Front Cell Infect Microbiol, 2021, 11: 573923. DOI: 10.3389/fcimb.2021.573923. [17] SOLÉ C, GUILLY S, da SILVA K, et al. Alterations in gut microbiome in cirrhosis as assessed by quantitative metagenomics: relationship with acute-on-chronic liver failure and prognosis[J]. Gastroenterology, 2021, 160(1): 206-218. e13. DOI: 10.1053/j.gastro.2020.08.054. [18] LLORENTE C, JEPSEN P, INAMINE T, et al. Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal Enterococcus[J]. Nat Commun, 2017, 8(1): 837. DOI: 10.1038/s41467-017-00796-x. [19] MOREAU R, ELKRIEF L, BUREAU C, et al. Effects of long-term norfloxacin therapy in patients with advanced cirrhosis[J]. Gastroenterology, 2018, 155(6): 1816-1827. e9. DOI: 10.1053/j.gastro.2018.08.026. [20] European Association for the Study of the Liver. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis[J]. J Hepatol, 2018, 69(2): 406-460. DOI: 10.1016/j.jhep.2018.03.024. [21] KIMER N, PEDERSEN JS, TAVENIER J, et al. Rifaximin has minor effects on bacterial composition, inflammation, and bacterial translocation in cirrhosis: A randomized trial[J]. J Gastroenterol Hepatol, 2018, 33(1): 307-314. DOI: 10.1111/jgh.13852. [22] ABRALDES JG, VILLANUEVA C, ARACIL C, et al. Addition of simvastatin to standard therapy for the prevention of variceal rebleeding does not reduce rebleeding but increases survival in patients with cirrhosis[J]. Gastroenterology, 2016, 150(5): 1160-1170. e3. DOI: 10.1053/j.gastro.2016.01.004. [23] BAJAJ JS, KASSAM Z, FAGAN A, et al. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial[J]. Hepatology, 2017, 66(6): 1727-1738. DOI: 10.1002/hep.29306. [24] BAJAJ JS, SALZMAN NH, ACHARYA C, et al. Fecal microbial transplant capsules are safe in hepatic encephalopathy: a phase 1, randomized, placebo-controlled trial[J]. Hepatology, 2019, 70(5): 1690-1703. DOI: 10.1002/hep.30690. [25] DEFILIPP Z, BLOOM PP, TORRES SOTO M, et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant[J]. N Engl J Med, 2019, 381(21): 2043-2050. DOI: 10.1056/NEJMoa1910437. [26] FUCHS CD, PAUMGARTNER G, MLITZ V, et al. Colesevelam attenuates cholestatic liver and bile duct injury in mdr2-/- mice by modulating composition, signalling and excretion of faecal bile acids[J]. Gut, 2018, 67(9): 1683-1691. DOI: 10.1136/GUTJNL-2017-314553. [27] BAJAJ JS, IDILMAN R, MABUDIAN L, et al. Diet affects gut microbiota and modulates hospitalization risk differentially in an international cirrhosis cohort[J]. Hepatology, 2018, 68(1): 234-247. DOI: 10.1002/HEP.29791.