G蛋白偶联受体在肝脏疾病中的作用
DOI: 10.3969/j.issn.1001-5256.2022.07.042
利益冲突声明: 所有作者均声明不存在利益冲突。
作者贡献声明: 陈蕊撰写论文; 郭北辰、李雨韩负责查阅及分析文献; 章坤修改论文; 韩涛、洪伟负责拟定写作思路、指导文章撰写。
-
摘要: 慢性肝病严重威胁人们的健康,近年来研究发现一些G蛋白偶联受体(GPCR)及相关信号通路参与肝脏的生理病理过程并与非酒精性脂肪性肝病、肝硬化及肝癌等肝脏疾病相关。本文综述GPCR与肝脏疾病的关联,以期为肝脏疾病诊疗提供新策略。
-
关键词:
- 受体, G-蛋白偶联 /
- 非酒精性脂肪性肝病 /
- 肝硬化 /
- 癌, 肝细胞 /
- 病理过程
Abstract: Chronic liver diseases greatly threaten the health of the Chinese people, and recent studies have found that some G protein-coupled receptors (GPCRs) and related signaling pathways are involved in the physiopathological processes of the liver and are associated with various liver diseases such as nonalcoholic fatty liver disease, liver cirrhosis, and liver cancer. This article reviews the association between GPCRs and liver diseases, so as to provide new strategies for the diagnosis and treatment of liver diseases. -
[1] RAMOS FIGUEIRA ER, ROCHA FILHO JA, SOUTO NACIF L, et al. Nutritional support for fulminant hepatitis[J]. Nutr Hosp, 2015, 32(6): 2427-2432. DOI: 10.3305/nh.2015.32.6.9769. [2] LEE SM, BOOE JM, PIOSZAK AA. Structural insights into ligand recognition and selectivity for classes A, B, and C GPCRs[J]. Eur J Pharmacol, 2015, 763(Pt B): 196-205. DOI: 10.1016/j.ejphar.2015.05.013. [3] SCHÖNEBERG T, LIEBSCHER I. Mutations in G protein-coupled receptors: mechanisms, pathophysiology and potential therapeutic approaches[J]. Pharmacol Rev, 2021, 73(1): 89-119. DOI: 10.1124/pharmrev.120.000011. [4] PENG WT, SUN WY, LI XR, et al. Emerging roles of G protein-coupled receptors in hepatocellular carcinoma[J]. Int J Mol Sci, 2018, 19(5): 1366. DOI: 10.3390/ijms19051366. [5] DUC NM, KIM HR, CHUNG KY. Structural mechanism of G protein activation by G protein-coupled receptor[J]. Eur J Pharmacol, 2015, 763(Pt B): 214-222. DOI: 10.1016/j.ejphar.2015.05.016. [6] HAUSER AS, ATTWOOD MM, RASK-ANDERSEN M, et al. Trends in GPCR drug discovery: new agents, targets and indications[J]. Nat Rev Drug Discov, 2017, 16(12): 829-842. DOI: 10.1038/nrd.2017.178. [7] GOUGH NR. Focus issue: New insights in GPCR to G protein signaling[J]. Sci Signal, 2016, 9(423): eg6. DOI: 10.1126/scisignal.aaf7642. [8] CATTANEO F, GUERRA G, PARISI M, et al. Cell-surface receptors transactivation mediated by g protein-coupled receptors[J]. Int J Mol Sci, 2014, 15(11): 19700-19728. DOI: 10.3390/ijms151119700. [9] SCHÖNEBERG T, SCHULZ A, BIEBERMANN H, et al. Mutant G-protein-coupled receptors as a cause of human diseases[J]. Pharmacol Ther, 2004, 104(3): 173-206. DOI: 10.1016/j.pharmthera.2004.08.008. [10] ZHOU J, ZHOU F, WANG W, et al. Epidemiological features of NAFLD from 1999 to 2018 in China[J]. Hepatology, 2020, 71(5): 1851-1864. DOI: 10.1002/hep.31150. [11] REVIEW TEAM, LABRECQUE DR, ABBAS Z, et al. World Gastroenterology Organisation global guidelines: Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. J Clin Gastroenterol, 2014, 48(6): 467-473. DOI: 10.1097/MCG.0000000000000116. [12] FARRELL GC, van ROOYEN D, GAN L, et al. NASH is an inflammatory disorder: pathogenic, prognostic and therapeutic implications[J]. Gut Liver, 2012, 6(2): 149-171. DOI: 10.5009/gnl.2012.6.2.149. [13] BAHIRAT UA, SHENOY RR, TALWAR R, et al. Co-administration of APD668, a G protein-coupled receptor 119 agonist and linagliptin, a DPPIV inhibitor, prevents progression of steatohepatitis in mice fed on a high trans-fat diet[J]. Biochem Biophys Res Commun, 2018, 495(2): 1608-1613. DOI: 10.1016/j.bbrc.2017.12.004. [14] YANG JW, KIM HS, IM JH, et al. GPR119: a promising target for nonalcoholic fatty liver disease[J]. FASEB J, 2016, 30(1): 324-335. DOI: 10.1096/fj.15-273771. [15] CHEN X, LIU C, RUAN L. G-protein-coupled receptors 120 agonist iii improves hepatic inflammation and ER stress in steatohepatitis[J]. Dig Dis Sci, 2021, 66(4): 1090-1096. DOI: 10.1007/s10620-020-06280-9. [16] AYD1N MM, AKÇAL1 KC. Liver fibrosis[J]. Turk J Gastroenterol, 2018, 29(1): 14-21. DOI: 10.5152/tjg.2018.17330. [17] Chinese Society of Hepatology, Chinese Medical Association. Chinese guidelines on the management of liver cirrhosis[J]. J Clin Hepatol, 2019, 35(11): 2408-2425. DOI: 10.3969/j.issn.1001-5256.2019.11.006.中华医学会肝病学分会. 肝硬化诊治指南[J]. 临床肝胆病杂志, 2019, 35(11): 2408-2425. DOI: 10.3969/j.issn.1001-5256.2019.11.006. [18] LOTERSZTAJN S, TEIXEIRA-CLERC F, JULIEN B, et al. CB2 receptors as new therapeutic targets for liver diseases[J]. Br J Pharmacol, 2008, 153(2): 286-289. DOI: 10.1038/sj.bjp.0707511. [19] JULIEN B, GRENARD P, TEIXEIRA-CLERC F, et al. Antifibrogenic role of the cannabinoid receptor CB2 in the liver[J]. Gastroenterology, 2005, 128(3): 742-755. DOI: 10.1053/j.gastro.2004.12.050. [20] de CASTRO FONSECA M, AGUIAR CJ, da ROCHA FRANCO JA, et al. GPR91: expanding the frontiers of Krebs cycle intermediates[J]. Cell Commun Signal, 2016, 14: 3. DOI: 10.1186/s12964-016-0126-1. [21] LIU XJ, XIE L, DU K, et al. Succinate-GPR-91 receptor signalling is responsible for nonalcoholic steatohepatitis-associated fibrosis: Effects of DHA supplementation[J]. Liver Int, 2020, 40(4): 830-843. DOI: 10.1111/liv.14370. [22] NGUYEN G, PARK SY, LE CT, et al. Metformin ameliorates activation of hepatic stellate cells and hepatic fibrosis by succinate and GPR91 inhibition[J]. Biochem Biophys Res Commun, 2018, 495(4): 2649-2656. DOI: 10.1016/j.bbrc.2017.12.143. [23] LI YH, WOO SH, CHOI DH, et al. Succinate causes α-SMA production through GPR91 activation in hepatic stellate cells[J]. Biochem Biophys Res Commun, 2015, 463(4): 853-858. DOI: 10.1016/j.bbrc.2015.06.023. [24] PARK SY, LE CT, SUNG KY, et al. Succinate induces hepatic fibrogenesis by promoting activation, proliferation, and migration, and inhibiting apoptosis of hepatic stellate cells[J]. Biochem Biophys Res Commun, 2018, 496(2): 673-678. DOI: 10.1016/j.bbrc.2018.01.106. [25] LI Y, XU A, JIA S, et al. Recent advances in the molecular mechanism of sex disparity in hepatocellular carcinoma[J]. Oncol Lett, 2019, 17(5): 4222-4228. DOI: 10.3892/ol.2019.10127. [26] YAN SY, FAN JG. Diagnosis and treatment of hepatocellular carcinoma associated with nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2021, 37(8): 1748-1752. DOI: 10.3969/j.issn.1001-5256.2021.08.002.颜士岩, 范建高. 非酒精性脂肪性肝病相关肝细胞癌的诊断和治疗[J]. 临床肝胆病杂志, 2021, 37(8): 1748-1752. DOI: 10.3969/j.issn.1001-5256.2021.08.002. [27] CASTAN L, MAGNAN A, BOUCHAUD G. Chemokine receptors in allergic diseases[J]. Allergy, 2017, 72(5): 682-690. DOI: 10.1111/all.13089. [28] ZHOU SL, DAI Z, ZHOU ZJ, et al. Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma[J]. Hepatology, 2012, 56(6): 2242-2254. DOI: 10.1002/hep.25907. [29] LI Y, WU J, ZHANG W, et al. Identification of serum CCL15 in hepatocellular carcinoma[J]. Br J Cancer, 2013, 108(1): 99-106. DOI: 10.1038/bjc.2012.494. [30] LIU Z, YANG L, XU J, et al. Enhanced expression and clinical significance of chemokine receptor CXCR2 in hepatocellular carcinoma[J]. J Surg Res, 2011, 166(2): 241-246. DOI: 10.1016/j.jss.2009.07.014. [31] ZHOU SL, ZHOU ZJ, HU ZQ, et al. CXCR2/CXCL5 axis contributes to epithelial-mesenchymal transition of HCC cells through activating PI3K/Akt/GSK-3β/Snail signaling[J]. Cancer Lett, 2015, 358(2): 124-135. DOI: 10.1016/j.canlet.2014.11.044. [32] GAO Q, ZHAO YJ, WANG XY, et al. CXCR6 upregulation contributes to a proinflammatory tumor microenvironment that drives metastasis and poor patient outcomes in hepatocellular carcinoma[J]. Cancer Res, 2012, 72(14): 3546-3556. DOI: 10.1158/0008-5472.CAN-11-4032. [33] YANAGIDA K, ISHⅡ S. Non-Edg family LPA receptors: the cutting edge of LPA research[J]. J Biochem, 2011, 150(3): 223-232. DOI: 10.1093/jb/mvr087. [34] ZUCKERMAN V, SOKOLOV E, SWET JH, et al. Expression and function of lysophosphatidic acid receptors (LPARs) 1 and 3 in human hepatic cancer progenitor cells[J]. Oncotarget, 2016, 7(3): 2951-2967. DOI: 10.18632/oncotarget.6696. [35] SOKOLOV E, EHEIM AL, AHRENS WA, et al. Lysophosphatidic acid receptor expression and function in human hepatocellular carcinoma[J]. J Surg Res, 2013, 180(1): 104-113. DOI: 10.1016/j.jss.2012.10.054.