非酒精性脂肪性肝病相关认知功能损伤的危险因素
DOI: 10.3969/j.issn.1001-5256.2022.11.031
利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:周铖负责撰写论文;赵晨露、尚东方负责修改论文;贾冉、卫靖靖负责拟定写作思路;赵文霞负责指导撰写文章。
Risk factors for cognitive impairment associated with nonalcoholic fatty liver disease
-
摘要: 非酒精性脂肪性肝病(NAFLD)现已成为全球最常见的慢性肝病之一。近年研究发现,NAFLD疾病进展过程中可出现不同程度的中枢神经系统功能障碍,包括认知功能损伤、情绪失衡等。本文归纳了不同阶段下NAFLD相关认知功能损伤的主要危险因素,为该病的早期预防与临床治疗提供一定依据和思路。Abstract: At present, non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases in the world. Recent studies have shown that varying degrees of central nervous system dysfunction can occur during the progression of NAFLD, including cognitive impairment and emotional imbalance. This article summarizes the main risk factors for NAFLD-related cognitive impairment at different stages, so as to provide a basis and ideas for the early prevention and clinical treatment of this disease.
-
Key words:
- Non-alcoholic Fatty Liver Disease /
- Cognition Disorders /
- Risk Factors
-
[1] RINELLA ME. Nonalcoholic fatty liver disease: a systematic review[J]. JAMA, 2015, 313(22): 2263-2273. DOI: 10.1001/jama.2015.5370. [2] KENNEDY-MARTIN T, BAE JP, PACZKOWSKI R, et al. Health-related quality of life burden of nonalcoholic steatohepatitis: a robust pragmatic literature review[J]. J Patient Rep Outcomes, 2017, 2: 28. DOI: 10.1186/s41687-018-0052-7. [3] DOWARD LC, BALP MM, TWISS J, et al. Development of a patient-reported outcome measure for non-alcoholic steatohepatitis (NASH-CHECK): Results of a qualitative study[J]. Patient, 2021, 14(5): 533-543. DOI: 10.1007/s40271-020-00485-w. [4] GBD 2016 Dementia Collaborators. Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(1): 88-106. DOI: 10.1016/S1474-4422(18)30403-4. [5] WEINSTEIN G, ZELBER-SAGI S, PREIS SR, et al. Association of nonalcoholic fatty liver disease with lower brain volume in healthy middle-aged adults in the framingham study[J]. JAMA Neurol, 2018, 75(1): 97-104. DOI: 10.1001/jamaneurol.2017.3229. [6] FILIPOVIĆ B, MARKOVIĆ O, ÐURIĆ V, et al. Cognitive changes and brain volume reduction in patients with nonalcoholic fatty liver disease[J]. Can J Gastroenterol Hepatol, 2018, 2018: 9638797. DOI: 10.1155/2018/9638797. [7] CELIKBILEK A, CELIKBILEK M, BOZKURT G. Cognitive assessment of patients with nonalcoholic fatty liver disease[J]. Eur J Gastroenterol Hepatol, 2018, 30(8): 944-950. DOI: 10.1097/MEG.0000000000001131. [8] TUTTOLOMONDO A, PETTA S, CASUCCIO A, et al. Reactive hyperemia index (RHI) and cognitive performance indexes are associated with histologic markers of liver disease in subjects with non-alcoholic fatty liver disease (NAFLD): a case control study[J]. Cardiovasc Diabetol, 2018, 17(1): 28. DOI: 10.1186/s12933-018-0670-7. [9] WEINSTEIN G, DAVIS-PLOURDE K, HIMALI JJ, et al. Non-alcoholic fatty liver disease, liver fibrosis score and cognitive function in middle-aged adults: The Framingham study[J]. Liver Int, 2019, 39(9): 1713-1721. DOI: 10.1111/liv.14161. [10] KANEKIYO T, BU G. The low-density lipoprotein receptor-related protein 1 and amyloid-β clearance in Alzheimer's disease[J]. Front Aging Neurosci, 2014, 6: 93. DOI: 10.3389/fnagi.2014.00093. [11] NUCERA S, RUGA S, CARDAMONE A, et al. MAFLD progression contributes to altered thalamus metabolism and brain structure[J]. Sci Rep, 2022, 12(1): 1207. DOI: 10.1038/s41598-022-05228-5. [12] ALBANESE E, DAVIS B, JONSSON PV, et al. Overweight and obesity in midlife and brain structure and dementia 26 years later: The AGES-Reykjavik study[J]. Am J Epidemiol, 2015, 181(9): 672-679. DOI: 10.1093/aje/kwu331. [13] MANTOVANI A, CSERMELY A, PETRACCA G, et al. Non-alcoholic fatty liver disease and risk of fatal and non-fatal cardiovascular events: an updated systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2021, 6(11): 903-913. DOI: 10.1016/S2468-1253(21)00308-3. [14] ONI ET, AGATSTON AS, BLAHA MJ, et al. A systematic review: burden and severity of subclinical cardiovascular disease among those with nonalcoholic fatty liver; should we care?[J]. Atherosclerosis, 2013, 230(2): 258-267. DOI: 10.1016/j.atherosclerosis.2013.07.052. [15] KLEINRIDDERS A, FERRIS HA, CAI W, et al. Insulin action in brain regulates systemic metabolism and brain function[J]. Diabetes, 2014, 63(7): 2232-2243. DOI: 10.2337/db14-0568. [16] ARNOLD SE, ARVANITAKIS Z, MACAULEY-RAMBACH SL, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums[J]. Nat Rev Neurol, 2018, 14(3): 168-181. DOI: 10.1038/nrneurol.2017.185. [17] van ELDEREN SG, de ROOS A, de CRAEN AJ, et al. Progression of brain atrophy and cognitive decline in diabetes mellitus: a 3-year follow-up[J]. Neurology, 2010, 75(11): 997-1002. DOI: 10.1212/WNL.0b013e3181f25f06. [18] ZHANG T, SHAW M, CHERBUIN N. Association between type 2 diabetes mellitus and brain atrophy: A Meta-analysis[J]. Diabetes Metab J, 2022. DOI: 10.4093/dmj.2021.0189.[Onlineaheadofprint] [19] COBLEY JN, FIORELLO ML, BAILEY DM. 13 reasons why the brain is susceptible to oxidative stress[J]. Redox Biol, 2018, 15: 490-503. DOI: 10.1016/j.redox.2018.01.008. [20] BANKS WA, RHEA EM. The blood-brain barrier, oxidative stress, and insulin resistance[J]. Antioxidants (Basel), 2021, 10(11): 1695. DOI: 10.3390/antiox10111695. [21] QIAO B, ZHOU Y, MA WJ, et al. Intestinal microflora imbalance in non-alcoholic fatty liver disease[J/CD]. Chin J Liver Dis: Electronic Edition, 2020, 12(4): 29-33. DOI: 10.3969/j.issn.1674-7380.2020.04.005.乔兵, 周永, 马文洁, 等. 肠道菌群失调在非酒精性脂肪性肝病中研究进展[J/CD]. 中国肝脏病杂志(电子版), 2020, 12(4): 29-33. DOI: 10.3969/j.issn.1674-7380.2020.04.005. [22] ARON-WISNEWSKY J, VIGLIOTTI C, WITJES J, et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(5): 279-297. DOI: 10.1038/s41575-020-0269-9. [23] BRUCE-KELLER AJ, SALBAUM JM, BERTHOUD HR. Harnessing gut microbes for mental health: Getting from here to there[J]. Biol Psychiatry, 2018, 83(3): 214-223. DOI: 10.1016/j.biopsych.2017.08.014. [24] DING JH, JIN Z, YANG XX, et al. Role of gut microbiota via the gut-liver-brain axis in digestive diseases[J]. World J Gastroenterol, 2020, 26(40): 6141-6162. DOI: 10.3748/wjg.v26.i40.6141. [25] SARKAR A, LEHTO SM, HARTY S, et al. Psychobiotics and the manipulation of bacteria-gut-brain signals[J]. Trends Neurosci, 2016, 39(11): 763-781. DOI: 10.1016/j.tins.2016.09.002. [26] LONG-SMITH C, O'RIORDAN K J, CLARKE G, et al. Microbiota-gut-brain axis: New therapeutic opportunities[J]. Annu Rev Pharmacol Toxicol, 2020, 60: 477-502. DOI: 10.1146/annurev-pharmtox-010919-023628. [27] SWAIN MG, JONES D. Fatigue in chronic liver disease: New insights and therapeutic approaches[J]. Liver Int, 2019, 39(1): 6-19. DOI: 10.1111/liv.13919. [28] GHAREEB DA, HAFEZ HS, HUSSIEN HM, et al. Non-alcoholic fatty liver induces insulin resistance and metabolic disorders with development of brain damage and dysfunction[J]. Metab Brain Dis, 2011, 26(4): 253-267. DOI: 10.1007/s11011-011-9261-y. [29] BALZANO T, FORTEZA J, MOLINA P, et al. The cerebellum of patients with steatohepatitis shows lymphocyte infiltration, microglial activation and loss of Purkinje and granular neurons[J]. Sci Rep, 2018, 8(1): 3004. DOI: 10.1038/s41598-018-21399-6. [30] VIROVIĆ-JUKI ĆL, STOJSAVLJEVI Ć -SHAPESKI S, FORGA ČJ, et al. Non-alcoholic fatty liver disease-a procoagulant condition?[J]. Croat Med J, 2021, 62(1): 25-33. [31] ÖNNERHAG K, NILSSON PM, LINDGREN S. Increased risk of cirrhosis and hepatocellular cancer during long-term follow-up of patients with biopsy-proven NAFLD[J]. Scand J Gastroenterol, 2014, 49(9): 1111-1118. DOI: 10.3109/00365521.2014.934911. [32] YOUNOSSI ZM, OTGONSUREN M, HENRY L, et al. Association of nonalcoholic fatty liver disease (NAFLD) with hepatocellular carcinoma (HCC) in the United States from 2004 to 2009[J]. Hepatology, 2015, 62(6): 1723-1730. DOI: 10.1002/hep.28123. [33] de CHIARA F, HEEBØLL S, MARRONE G, et al. Urea cycle dysregulation in non-alcoholic fatty liver disease[J]. J Hepatol, 2018, 69(4): 905-915. DOI: 10.1016/j.jhep.2018.06.023. [34] HIGARZA SG, ARBOLEYA S, GUEIMONDE M, et al. Neurobehavioral dysfunction in non-alcoholic steatohepatitis is associated with hyperammonemia, gut dysbiosis, and metabolic and functional brain regional deficits[J]. PLoS One, 2019, 14(9): e0223019. DOI: 10.1371/journal.pone.0223019. [35] LEBOSSÉ F, GUDD C, TUNC E, et al. CD8+T cells from patients with cirrhosis display a phenotype that may contribute to cirrhosis-associated immune dysfunction[J]. EBioMedicine, 2019, 49: 258-268. DOI: 10.1016/j.ebiom.2019.10.011. [36] FITZPATRICK Z, FRAZER G, FERRO A, et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses[J]. Nature, 2020, 587(7834): 472-476. DOI: 10.1038/s41586-020-2886-4. [37] AL-ASMAKH M, HEDIN L. Microbiota and the control of blood-tissue barriers[J]. Tissue Barriers, 2015, 3(3): e1039691. DOI: 10.1080/21688370.2015.1039691. [38] KRONSTEN VT, TRANAH TH, PARIANTE C, et al. Gut-derived systemic inflammation as a driver of depression in chronic liver disease[J]. J Hepatol, 2022, 76(3): 665-680. DOI: 10.1016/j.jhep.2021.11.008.
本文二维码
计量
- 文章访问数: 393
- HTML全文浏览量: 158
- PDF下载量: 52
- 被引次数: 0