中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NLRP3炎症小体激活促进肝星状细胞活化的机制

彭憬 袁维 银思涵 孙克伟

引用本文:
Citation:

NLRP3炎症小体激活促进肝星状细胞活化的机制

DOI: 10.3969/j.issn.1001-5256.2022.11.035
基金项目: 

国家自然科学基金青年基金 (81904182);

湖南省自然科学基金 (S2020JJ5441)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:彭憬、孙克伟参与起草和修改文章关键内容;袁维、银思涵对研究的思路有关键贡献。
详细信息
    通信作者:

    孙克伟,Keweisun@aliyun.com

Mechanism of NLRP3 inflammasome promoting hepatic stellate cell activation

Research funding: 

National Science Fund for Distinguished Young Scholar (81904182);

Natural Science Foundation of Hunan Province (S2020JJ5441)

More Information
  • 摘要: 肝纤维化是慢性肝脏损伤的共同结果,可进展为肝硬化甚至是肝癌,目前尚无有效逆转肝纤维化的手段。在窦周隙中被激活的肝星状细胞转变为肌成纤维细胞并分泌胶原,是肝纤维化进程中的中心事件。NLRP3炎症小体可被各种损伤刺激激活,介导炎症反应和细胞焦亡。近年研究发现NLRP3炎症小体与肝星状细胞活化密切相关。介绍了在各种病理因素刺激下,NLRP3炎症小体在肝星状细胞内不同通路的激活,以及促进胞外炎症微环境的形成,从而介导肝星状细胞活化,在促肝纤维化中发挥重要作用。

     

  • 图  1  NLRP3炎症小体的两步激活模型

    注:微生物组成部分和内源性损伤因子提供启动信号,导致关键转录因子NF-κB激活,随后上调NLRP3和pro-IL-1β表达。细胞外ATP、K+外流、Ca2+内流、ROS的产生、溶酶体损伤、颗粒物质等激活NLRP3炎症小体。dsRNA,双链RNA;TLR4,Toll样受体4;ROS,活性氧;Ox-mtDNA,氧化线粒体DNA;TXNIP,硫氧还蛋白互作蛋白;TWIK2,弱内向整流二孔K+通道2;TRPM2,瞬时受体电位M2通道;P2X7R,嘌呤能离子通道型受体7;MAVS,线粒体抗病毒信号蛋白;CLIC,胞内氯离子通道。

    Figure  1.  Two steps activation model of NLRP3 inflammasome

    图  2  NLRP3炎症小体的激活导致HSC活化

    注:NF-κB,核因子κB;MyD88,髓样分化因子88;MAPK,丝裂原活化蛋白激酶;Dectin-1,树突状细胞相关C型凝集素-1;ERβ,雌激素受体β;ASK1,凋亡信号调节激酶1;Syk脾酪氨酸激酶;SEA,日本血吸虫可溶性虫卵抗原;p66Shc,66 kDa原癌基因Src胶原同源物(Shc)衔接蛋白。

    Figure  2.  Mature NLRP3 inflammasome facilitates the activation of hepatic stellate cell

  • [1] DHAR D, BAGLIERI J, KISSELEVA T, et al. Mechanisms of liver fibrosis and its role in liver cancer[J]. Exp Biol Med (Maywood), 2020, 245(2): 96-108. DOI: 10.1177/1535370219898141.
    [2] KHOMICH O, IVANOV AV, BARTOSCH B. Metabolic hallmarks of hepatic stellate cells in liver fibrosis[J]. Cells, 2019, 9(1): 24. DOI: 10.3390/cells9010024.
    [3] NATARAJAN V, HARRIS EN, KIDAMBI S. SECs (sinusoidal endothelial cells), liver microenvironment, and fibrosis[J]. Biomed Res Int, 2017, 2017: 4097205. DOI: 10.1155/2017/4097205.
    [4] GAUL S, LESZCZYNSKA A, ALEGRE F, et al. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis[J]. J Hepatol, 2021, 74(1): 156-167. DOI: 10.1016/j.jhep.2020.07.041.
    [5] INZAUGARAT ME, JOHNSON CD, HOLTMANN TM, et al. NLR family pyrin domain-containing 3 inflammasome activation in hepatic stellate cells induces liver fibrosis in mice[J]. Hepatology, 2019, 69(2): 845-859. DOI: 10.1002/hep.30252.
    [6] BAEZA-RAJA B, GOODYEAR A, LIU X, et al. Pharmacological inhibition of P2RX7 ameliorates liver injury by reducing inflammation and fibrosis[J]. PLoS One, 2020, 15(6): e0234038. DOI: 10.1371/journal.pone.0234038.
    [7] SWANSON KV, DENG M, TING JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019, 19(8): 477-489. DOI: 10.1038/s41577-019-0165-0.
    [8] KELLEY N, JELTEMA D, DUAN Y, et al. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation[J]. Int J Mol Sci, 2019, 20(13): 3328. DOI: 10.3390/ijms20133328.
    [9] ZHANG Y, LI Y, MU T, et al. Hepatic stellate cells specific liposomes with the Toll-like receptor 4 shRNA attenuates liver fibrosis[J]. J Cell Mol Med, 2021, 25(2): 1299-1313. DOI: 10.1111/jcmm.16209.
    [10] DONG Z, ZHUANG Q, NING M, et al. Palmitic acid stimulates NLRP3 inflammasome activation through TLR4-NF-κB signal pathway in hepatic stellate cells[J]. Ann Transl Med, 2020, 8(5): 168. DOI: 10.21037/atm.2020.02.21.
    [11] CAI SM, YANG RQ, LI Y, et al. Angiotensin-(1-7) improves liver fibrosis by regulating the NLRP3 inflammasome via redox balance modulation[J]. Antioxid Redox Signal, 2016, 24(14): 795-812. DOI: 10.1089/ars.2015.6498.
    [12] JIANG S, ZHANG Y, ZHENG JH, et al. Potentiation of hepatic stellate cell activation by extracellular ATP is dependent on P2X7R-mediated NLRP3 inflammasome activation[J]. Pharmacol Res, 2017, 117: 82-93. DOI: 10.1016/j.phrs.2016.11.040.
    [13] JIANG M, CUI BW, WU YL, et al. P2X7R orchestrates the progression of murine hepatic fibrosis by making a feedback loop from macrophage to hepatic stellate cells[J]. Toxicol Lett, 2020, 333: 22-32. DOI: 10.1016/j.toxlet.2020.07.023.
    [14] GASBARRINI A, BORLE AB, CARACENI P, et al. Effect of ethanol on adenosine triphosphate, cytosolic free calcium, and cell injury in rat hepatocytes. Time course and effect of nutritional status[J]. Dig Dis Sci, 1996, 41(11): 2204-2212. DOI: 10.1007/BF02071401.
    [15] SHAN L, JIANG T, CI L, et al. Purine signaling regulating HSCs inflammatory cytokines secretion, activation, and proliferation plays a critical role in alcoholic liver disease[J]. Mol Cell Biochem, 2020, 466(1-2): 91-102. DOI: 10.1007/s11010-020-03691-0.
    [16] LU L, LU Q, CHEN W, et al. Vitamin D(3) protects against diabetic retinopathy by inhibiting high-glucose-induced activation of the ROS/TXNIP/NLRP3 inflammasome pathway[J]. J Diabetes Res, 2018, 2018: 8193523. DOI: 10.1155/2018/8193523.
    [17] SHIMIZU H, TSUBOTA T, KANKI K, et al. All-trans retinoic acid ameliorates hepatic stellate cell activation via suppression of thioredoxin interacting protein expression[J]. J Cell Physiol, 2018, 233(1): 607-616. DOI: 10.1002/jcp.25921.
    [18] LIU X, ZHANG YR, CAI C, et al. Taurine alleviates schistosoma-induced liver injury by inhibiting the TXNIP/NLRP3 inflammasome signal pathway and pyroptosis[J]. Infect Immun, 2019, 87(12): e00732-19. DOI: 10.1128/IAI.00732-19.
    [19] WANG Z, ZHAO Y, SUN R, et al. circ-CBFB upregulates p66Shc to perturb mitochondrial dynamics in APAP-induced liver injury[J]. Cell Death Dis, 2020, 11(11): 953. DOI: 10.1038/s41419-020-03160-y.
    [20] ZHAO Y, WANG Z, FENG D, et al. p66Shc contributes to liver fibrosis through the regulation of mitochondrial reactive oxygen species[J]. Theranostics, 2019, 9(5): 1510-1522. DOI: 10.7150/thno.29620.
    [21] ZHANG B, ZHANG CG, JI LH, et al. Estrogen receptor β selective agonist ameliorates liver cirrhosis in rats by inhibiting the activation and proliferation of hepatic stellate cells[J]. J Gastroenterol Hepatol, 2018, 33(3): 747-755. DOI: 10.1111/jgh.13976.
    [22] LIN L, ZHOU M, QUE R, et al. Saikosaponin-d protects against liver fibrosis by regulating the estrogen receptor-β/NLRP3 inflammasome pathway[J]. Biochem Cell Biol, 2021, 99(5): 666-674. DOI: 10.1139/bcb-2020-0561.
    [23] QUE R, SHEN Y, REN J, et al. Estrogen receptor-β-dependent effects of saikosaponin-d on the suppression of oxidative stress-induced rat hepatic stellate cell activation[J]. Int J Mol Med, 2018, 41(3): 1357-1364. DOI: 10.3892/ijmm.2017.3349.
    [24] XIONG M, LI J, YANG S, et al. Influence of gender and reproductive factors on liver fibrosis in patients with chronic hepatitis B infection[J]. Clin Transl Gastroenterol, 2019, 10(10): e00085. DOI: 10.14309/ctg.0000000000000085.
    [25] LIMA-JUNIOR DS, MINEO T, CALICH V, et al. Dectin-1 activation during leishmania amazonensis phagocytosis prompts Syk-dependent reactive oxygen species production to trigger inflammasome assembly and restriction of parasite replication[J]. J Immunol, 2017, 199(6): 2055-2068. DOI: 10.4049/jimmunol.1700258.
    [26] LU YQ, ZHONG S, MENG N, et al. NLRP3 inflammasome activation results in liver inflammation and fibrosis in mice infected with Schistosoma japonicum in a Syk-dependent manner[J]. Sci Rep, 2017, 7(1): 8120. DOI: 10.1038/s41598-017-08689-1
    [27] LIN YC, HUANG DY, WANG JS, et al. Syk is involved in NLRP3 inflammasome-mediated caspase-1 activation through adaptor ASC phosphorylation and enhanced oligomerization[J]. J Leukoc Biol, 2015, 97(5): 825-835. DOI: 10.1189/jlb.3HI0814-371RR.
    [28] YOON YC, FANG Z, LEE JE, et al. Selonsertib inhibits liver fibrosis via downregulation of ASK1/MAPK pathway of hepatic stellate cells[J]. Biomol Ther (Seoul), 2020, 28(6): 527-536. DOI: 10.4062/biomolther.2020.016.
    [29] SANDALL CF, MACDONALD JA. Effects of phosphorylation on the NLRP3 inflammasome[J]. Arch Biochem Biophys, 2019, 670: 43-57. DOI: 10.1016/j.abb.2019.02.020.
    [30] SCHUSTER-GAUL S, GEISLER LJ, MCGEOUGH MD, et al. ASK1 inhibition reduces cell death and hepatic fibrosis in an Nlrp3 mutant liver injury model[J]. JCI Insight, 2020, 5(2). DOI: 10.1172/jci.insight.123294.
    [31] LOOMBA R, LAWITZ E, MANTRY PS, et al. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: A randomized, phase 2 trial[J]. Hepatology, 2018, 67(2): 549-559. DOI: 10.1002/hep.29514.
    [32] MCQUITTY CE, WILLIAMS R, CHOKSHI S, et al. Immunomodulatory role of the extracellular matrix within the liver disease microenvironment[J]. Front Immunol, 2020, 11: 574276. DOI: 10.3389/fimmu.2020.574276.
    [33] QIN CC, LIU YN, HU Y, et al. Macrophage inflammatory protein-2 as mediator of inflammation in acute liver injury[J]. World J Gastroenterol, 2017, 23(17): 3043-3052. DOI: 10.3748/wjg.v23.i17.3043.
    [34] HOLTMANN TM, INZAUGARAT ME, KNORR J, et al. Bile acids activate NLRP3 inflammasome, promoting murine liver inflammation or fibrosis in a cell type-specific manner[J]. Cells, 2021, 10(10): 2618. DOI: 10.3390/cells10102618.
    [35] YAN W, SHEN Y, HUANG J, et al. MCC950 ameliorates acute liver injury through modulating macrophage polarization and myeloid-derived suppressor cells function[J]. Front Med (Lausanne), 2021, 8: 752223. DOI: 10.3389/fmed.2021.752223.
    [36] BERINGER A, MIOSSEC P. IL-17 and TNF-α co-operation contributes to the proinflammatory response of hepatic stellate cells[J]. Clin Exp Immunol, 2019, 198(1): 111-120. DOI: 10.1111/cei.13316.
    [37] KAGAN P, SULTAN M, TACHLYTSKI I, et al. Both MAPK and STAT3 signal transduction pathways are necessary for IL-6-dependent hepatic stellate cells activation[J]. PLoS One, 2017, 12(5): e0176173. DOI: 10.1371/journal.pone.0176173.
    [38] GE S, YANG W, CHEN H, et al. MyD88 in macrophages enhances liver fibrosis by activation of NLRP3 inflammasome in HSCs[J]. Int J Mol Sci, 2021, 22(22): 12413. DOI: 10.3390/ijms222212413.
    [39] WREE A, MCGEOUGH MD, INZAUGARAT ME, et al. NLRP3 inflammasome driven liver injury and fibrosis: Roles of IL-17 and TNF in mice[J]. Hepatology, 2018, 67(2): 736-749. DOI: 10.1002/hep.29523.
    [40] ZHOU Z, XU MJ, CAI Y, et al. Neutrophil-hepatic stellate cell interactions promote fibrosis in experimental steatohepatitis[J]. Cell Mol Gastroenterol Hepatol, 2018, 5(3): 399-413. DOI: 10.1016/j.jcmgh.2018.01.003.
    [41] KANG H, SEO E, OH YS, et al. TGF-β activates NLRP3 inflammasome by an autocrine production of TGF-β in LX-2 human hepatic stellate cells[J]. Mol Cell Biochem, 2022, 477(5): 1329-1338. DOI: 10.1007/s11010-022-04369-5.
    [42] WANG H, LIU S, WANG Y, et al. Nod-like receptor protein 3 inflammasome activation by Escherichia coli RNA induces transforming growth factor beta 1 secretion in hepatic stellate cells[J]. Bosn J Basic Med Sci, 2016, 16(2): 126-131. DOI: 10.17305/bjbms.2016.699.
    [43] LEE KY, ITO K, HAYASHI R, et al. NF-kappaB and activator protein 1 response elements and the role of histone modifications in IL-1beta-induced TGF-beta1 gene transcription[J]. J Immunol, 2006, 176(1): 603-615. DOI: 10.4049/jimmunol.176.1.603.
    [44] REITER FP, WIMMER R, WOTTKE L, et al. Role of interleukin-1 and its antagonism of hepatic stellate cell proliferation and liver fibrosis in the Abcb4(-/-) mouse model[J]. World J Hepatol, 2016, 8(8): 401-410. DOI: 10.4254/wjh.v8.i8.401.
    [45] YAPING Z, YING W, LUQIN D, et al. Mechanism of interleukin-1β-induced proliferation in rat hepatic stellate cells from different levels of signal transduction[J]. APMIS, 2014, 122(5): 392-398. DOI: 10.1111/apm.12155.
    [46] FRISSEN M, LIAO L, SCHNEIDER KM, et al. Bidirectional role of NLRP3 during acute and chronic cholestaticliver injury[J]. Hepatology, 2021, 73(5): 1836-1854. DOI: 10.1002/hep.31494.
    [47] SCHWAID AG, SPENCER KB. Strategies for targeting the NLRP3 inflammasome in the clinical and preclinical space[J]. J Med Chem, 2021, 64(1): 101-122. DOI: 10.1021/acs.jmedchem.0c01307.
    [48] KENNEDY CR, GOYA GROCIN A, KOVAČIČ T, et al. A probe for NLRP3 inflammasome inhibitor MCC950 identifies carbonic anhydrase 2 as a novel target[J]. ACS Chem Biol, 2021, 16(6): 982-990. DOI: 10.1021/acschembio.1c00218.
    [49] MASSARO MG, POMPILI M, SICIGNANO LL, et al. Improvement of liver involvement in familial mediterranean fever after the introduction of canakinumab: A case report[J]. Mediterr J Hematol Infect Dis, 2020, 12(1): e2020059. DOI: 10.4084/MJHID.2020.059.
  • 加载中
图(2)
计量
  • 文章访问数:  772
  • HTML全文浏览量:  487
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-29
  • 录用日期:  2022-05-10
  • 出版日期:  2022-11-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回