中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肝细胞癌肿瘤免疫微环境中T淋巴细胞的功能与调控机制

韩孟奎 李晋 杨小华

引用本文:
Citation:

肝细胞癌肿瘤免疫微环境中T淋巴细胞的功能与调控机制

DOI: 10.3969/j.issn.1001-5256.2022.11.037
基金项目: 

国家自然科学青年基金项目 (81902054);

苏州市“科教兴卫”项目 (kjxw2018045);

苏州市科技发展计划项目 (SKJYD2021136);

伊犁州临床医学研究院研究基金项目 (yl2021lh04)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:韩孟奎负责文献资料收集分析,论文撰写;李晋负责论文修改,对文章的知识性内容做出批评性审阅;杨小华负责指导撰写论文并最后定稿。
详细信息
    通信作者:

    杨小华,yxiaohua2022@163.com

Function and regulatory mechanism of T lymphocytes in tumor immune microenvironment of hepatocellular carcinoma

Research funding: 

National Natural Science Foundation of China (81902054);

Science and Education Project of Suzhou (kjxw2018045);

Science and Technology Development Plan of Suzhou (SKJYD2021136);

Clinical Medicine Research Foundation of Yili (yl2021lh04)

More Information
  • 摘要: T淋巴细胞作为肿瘤免疫微环境中主要免疫细胞,能够通过产生细胞因子、细胞毒性酶(穿孔素、颗粒酶B)等途径影响肝癌细胞增殖、迁移从而控制肿瘤进展。同时,肿瘤免疫微环境中树突状细胞、髓样抑制细胞等免疫细胞可通过多种途径调控不同亚型T淋巴细胞的功能。本文综述了肿瘤免疫微环境中常见免疫细胞对T淋巴细胞功能的影响,以及涉及T淋巴细胞功能调节的关键信号通路在HCC中的作用机制,以期为HCC更优治疗策略的研发提供思路和线索。

     

  • 图  1  HCC免疫微环境中T淋巴细胞及其相关免疫细胞的调控作用及分子机制

    Figure  1.  Regulatory function and molecular mechanism of T cells and related immune cells in the immune microenvironment of HCC

  • [1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
    [2] VOGEL A, SABOROWSKI A. Current strategies for the treatment of intermediate and advanced hepatocellular carcinoma[J]. Cancer Treat Rev, 2020, 82: 101946. DOI: 10.1016/j.ctrv.2019.101946.
    [3] LI XY, SHEN Y, ZHANG L, et al. Understanding initiation and progression of hepatocellular carcinoma through single cell sequencing[J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(3): 188720. DOI: 10.1016/j.bbcan.2022.188720.
    [4] TOUGH DF, RIOJA I, MODIS LK, et al. Epigenetic regulation of T cell memory: Recalling therapeutic implications[J]. Trends Immunol, 2020, 41(1): 29-45. DOI: 10.1016/j.it.2019.11.008.
    [5] RAMZAN M, STURM N, DECAENS T, et al. Liver-infiltrating CD8+lymphocytes as prognostic factor for tumour recurrence in hepatitis C virus-related hepatocellular carcinoma[J]. Liver Int, 2016, 36(3): 434-444. DOI: 10.1111/liv.12927.
    [6] KHAN O, GILES JR, MCDONALD S, et al. TOX transcriptionally and epigenetically programs CD8+T cell exhaustion[J]. Nature, 2019, 571(7764): 211-218. DOI: 10.1038/s41586-019-1325-x.
    [7] BROWN ZJ, FU Q, MA C, et al. Carnitine palmitoyl transferase gene upregulation by linoleic acid induces CD4+T cell apoptosis promoting HCC development[J]. Cell Death Dis, 2018, 9(6): 620. DOI: 10.1038/s41419-018-0687-6.
    [8] DUTTA A, VENKATA GANESH H, LOVE PE. New insights into epigenetic regulation of T cell differentiation[J]. Cells, 2021, 10(12): 3459. DOI: 10.3390/cells10123459.
    [9] QUEZADA SA, SIMPSON TR, PEGGS KS, et al. Tumor-reactive CD4+T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts[J]. J Exp Med, 2010, 207(3): 637-650. DOI: 10.1084/jem.20091918.
    [10] HUANG Y, LIAO H, ZHANG Y, et al. Prognostic value of tumor-infiltrating FoxP3+T cells in gastrointestinal cancers: a meta analysis[J]. PLoS One, 2014, 9(5): e94376. DOI: 10.1371/journal.pone.0094376.
    [11] ZHANG H, JIANG Z, ZHANG L. Dual effect of T helper cell 17 (Th17) and regulatory T cell (Treg) in liver pathological process: From occurrence to end stage of disease[J]. Int Immunopharmacol, 2019, 69: 50-59. DOI: 10.1016/j.intimp.2019.01.005.
    [12] LANGHANS B, NISCHALKE HD, KRÄMER B, et al. Role of regulatory T cells and checkpoint inhibition in hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2019, 68(12): 2055-2066. DOI: 10.1007/s00262-019-02427-4.
    [13] HAN Y, CHEN Z, YANG Y, et al. Human CD14+CTLA-4+regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2, 3-dioxygenase production in hepatocellular carcinoma[J]. Hepatology, 2014, 59(2): 567-579. DOI: 10.1002/hep.26694.
    [14] ZHOU ZJ, XIN HY, LI J, et al. Intratumoral plasmacytoid dendritic cells as a poor prognostic factor for hepatocellular carcinoma following curative resection[J]. Cancer Immunol Immunother, 2019, 68(8): 1223-1233. DOI: 10.1007/s00262-019-02355-3.
    [15] CHEN X, DU Y, HU Q, et al. Tumor-derived CD4+CD25+regulatory T cells inhibit dendritic cells function by CTLA-4[J]. Pathol Res Pract, 2017, 213(3): 245-249. DOI: 10.1016/j.prp.2016.12.008.
    [16] ZHOU G, SPRENGERS D, BOOR PPC, et al. Antibodies against immune checkpoint molecules restore functions of tumor-infiltrating T cells in hepatocellular carcinomas[J]. Gastroenterology, 2017, 153(4): 1107-1119. e10. DOI: 10.1053/j.gastro.2017.06.017.
    [17] YU Z, LI Y, LI Y, et al. Bufalin stimulates antitumor immune response by driving tumor-infiltrating macrophage toward M1 phenotype in hepatocellular carcinoma[J]. J Immunother Cancer, 2022, 10(5): e004297. DOI: 10.1136/jitc-2021-004297.
    [18] LI X, YAO W, YUAN Y, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma[J]. Gut, 2017, 66(1): 157-167. DOI: 10.1136/gutjnl-2015-310514.
    [19] PU J, XU Z, NIAN J, et al. M2 macrophage-derived extracellular vesicles facilitate CD8+T cell exhaustion in hepatocellular carcinoma via the miR-21-5p/YOD1/YAP/β-catenin pathway[J]. Cell Death Discov, 2021, 7(1): 182. DOI: 10.1038/s41420-021-00556-3.
    [20] WU Q, ZHOU W, YIN S, et al. Blocking triggering receptor expressed on myeloid cells-1-positive tumor-associated macrophages induced by hypoxia reverses immunosuppression and anti-programmed cell death ligand 1 resistance in liver cancer[J]. Hepatology, 2019, 70(1): 198-214. DOI: 10.1002/hep.30593.
    [21] PERANZONI E, LEMOINE J, VIMEUX L, et al. Macrophages impede CD8+T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment[J]. Proc Natl Acad Sci U S A, 2018, 115(17): E4041-E4050. DOI: 10.1073/pnas.1720948115.
    [22] WANG N, TAN HY, LU Y, et al. PIWIL1 governs the crosstalk of cancer cell metabolism and immunosuppressive microenvironment in hepatocellular carcinoma[J]. Signal Transduct Target Ther, 2021, 6(1): 86. DOI: 10.1038/s41392-021-00485-8.
    [23] HSIEH CC, HUNG CH, CHIANG M, et al. Hepatic stellate cells enhance liver cancer progression by inducing myeloid-derived suppressor cells through interleukin-6 signaling[J]. Int J Mol Sci, 2019, 20(20): 5079. DOI: 10.3390/ijms20205079.
    [24] DYSTHE M, PARIHAR R. Myeloid-derived suppressor cells in the tumor microenvironment[J]. Adv Exp Med Biol, 2020, 1224: 117-140. DOI: 10.1007/978-3-030-35723-8_8.
    [25] TRAILIN A, ČERVENKOVÁ L, AMBROZKIEWICZ F, et al. T-and B-cells in the inner invasive margin of hepatocellular carcinoma after resection associate with favorable prognosis[J]. Cancers (Basel), 2022, 14(3): 604. DOI: 10.3390/cancers14030604.
    [26] SHI JY, GAO Q, WANG ZC, et al. Margin-infiltrating CD20+B cells display an atypical memory phenotype and correlate with favorable prognosis in hepatocellular carcinoma[J]. Clin Cancer Res, 2013, 19(21): 5994-6005. DOI: 10.1158/1078-0432.CCR-12-3497.
    [27] GARNELO M, TAN A, HER Z, et al. Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma[J]. Gut, 2017, 66(2): 342-351. DOI: 10.1136/gutjnl-2015-310814.
    [28] FENG Y, LIU L, LI J, et al. Systematic characterization of the tumor microenvironment in Chinese patients with hepatocellular carcinoma highlights intratumoral B cells as a potential immunotherapy target[J]. Oncol Rep, 2022, 47(2): 38. DOI: 10.3892/or.2021.8249.
    [29] XUE H, LIN F, TAN H, et al. Overrepresentation of IL-10-expressing B cells suppresses cytotoxic CD4+T cell activity in HBV-induced hepatocellular carcinoma[J]. PLoS One, 2016, 11(5): e0154815. DOI: 10.1371/journal.pone.0154815.
    [30] RUIZ DE GALARRETA M, BRESNAHAN E, MOLINA-SÁNCHEZ P, et al. β-catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma[J]. Cancer Discov, 2019, 9(8): 1124-1141. DOI: 10.1158/2159-8290.CD-19-0074.
    [31] SCHINZARI V, TIMPERI E, PECORA G, et al. Wnt3a/β-catenin signaling conditions differentiation of partially exhausted T-effector cells in human cancers[J]. Cancer Immunol Res, 2018, 6(8): 941-952. DOI: 10.1158/2326-6066.CIR-17-0712.
    [32] ZHU GQ, WANG Y, WANG B, et al. Targeting HNRNPM inhibits cancer stemness and enhances antitumor immunity in Wnt-activated hepatocellular carcinoma[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(5): 1413-1447. DOI: 10.1016/j.jcmgh.2022.02.006.
    [33] TAURIELLO DVF, SANCHO E, BATLLE E. Overcoming TGFβ-mediated immune evasion in cancer[J]. Nat Rev Cancer, 2022, 22(1): 25-44. DOI: 10.1038/s41568-021-00413-6.
    [34] BATLLE E, MASSAGUÉ J. Transforming growth factor-β signaling in immunity and cancer[J]. Immunity, 2019, 50(4): 924-940. DOI: 10.1016/j.immuni.2019.03.024.
    [35] DIMELOE S, GUBSER P, LOELIGER J, et al. Tumor-derived TGF-β inhibits mitochondrial respiration to suppress IFN-γ production by human CD4+T cells[J]. Sci Signal, 2019, 12(599): eaav3334. DOI: 10.1126/scisignal.aav3334.
    [36] WANG X, HE Q, SHEN H, et al. TOX promotes the exhaustion of antitumor CD8+T cells by preventing PD1 degradation in hepatocellular carcinoma[J]. J Hepatol, 2019, 71(4): 731-741. DOI: 10.1016/j.jhep.2019.05.015.
    [37] DITURI F, MANCARELLA S, SERINO G, et al. Direct and indirect effect of TGFβ on treg transendothelial recruitment in HCC tissue microenvironment[J]. Int J Mol Sci, 2021, 22(21): 11765. DOI: 10.3390/ijms222111765.
    [38] HE G, YU GY, TEMKIN V, et al. Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation[J]. Cancer Cell, 2010, 17(3): 286-297. DOI: 10.1016/j.ccr.2009.12.048.
    [39] CHENG JT, DENG YN, YI HM, et al. Hepatic carcinoma-associated fibroblasts induce IDO-producing regulatory dendritic cells through IL-6-mediated STAT3 activation[J]. Oncogenesis, 2016, 5(2): e198. DOI: 10.1038/oncsis.2016.7.
    [40] MIRLEKAR B, PYLAYEVA-GUPTA Y. IL-12 family cytokines in cancer and immunotherapy[J]. Cancers (Basel), 2021, 13(2): 167. DOI: 10.3390/cancers13020167.
    [41] NISHIDA N. Clinical implications of the dual blockade of the PD-1/PD-L1 and vascular endothelial growth factor axes in the treatment of hepatocellular carcinoma[J]. Hepatobiliary Surg Nutr, 2020, 9(5): 640-643. DOI: 10.21037/hbsn.2019.10.18.
    [42] EL-KHOUEIRY AB, SANGRO B, YAU T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. Lancet, 2017, 389(10088): 2492-2502. DOI: 10.1016/S0140-6736(17)31046-2.
    [43] AGDASHIAN D, ELGINDI M, XIE C, et al. The effect of anti-CTLA4 treatment on peripheral and intra-tumoral T cells in patients with hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2019, 68(4): 599-608. DOI: 10.1007/s00262-019-02299-8.
    [44] QIN S, REN Z, MENG Z, et al. Camrelizumab in patients with previously treated advanced hepatocellular carcinoma: a multicentre, open-label, parallel-group, randomised, phase 2 trial[J]. Lancet Oncol, 2020, 21(4): 571-580. DOI: 10.1016/S1470-2045(20)30011-5.
    [45] YAU T, KANG YK, KIM TY, et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: the CheckMate 040 randomized clinical trial[J]. JAMA Oncol, 2020, 6(11): e204564. DOI: 10.1001/jamaoncol.2020.4564.
    [46] GORABI AM, HAJIGHASEMI S, SATHYAPALAN T, et al. Cell transfer-based immunotherapies in cancer: A review[J]. IUBMB Life, 2020, 72(4): 790-800. DOI: 10.1002/iub.2180.
    [47] LEE JH, LEE JH, LIM YS, et al. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma[J]. Gastroenterology, 2015, 148(7): 1383-1391. e6. DOI: 10.1053/j.gastro.2015.02.055.
    [48] SZOOR A, VAIDYA A, VELASQUEZ MP, et al. T cell-activating mesenchymal stem cells as a biotherapeutic for HCC[J]. Mol Ther Oncolytics, 2017, 6: 69-79. DOI: 10.1016/j.omto.2017.07.002.
    [49] LI J, HUANG S, ZHOU Z, et al. Exosomes derived from rAAV/AFP-transfected dendritic cells elicit specific T cell-mediated immune responses against hepatocellular carcinoma[J]. Cancer Manag Res, 2018, 10: 4945-4957. DOI: 10.2147/CMAR.S178326.
    [50] TANIGUCHI M, MIZUNO S, YOSHIKAWA T, et al. Peptide vaccine as an adjuvant therapy for glypican-3-positive hepatocellular carcinoma induces peptide-specific CTLs and improves long prognosis[J]. Cancer Sci, 2020, 111(8): 2747-2759. DOI: 10.1111/cas.14497.
  • 加载中
图(1)
计量
  • 文章访问数:  524
  • HTML全文浏览量:  533
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-03
  • 录用日期:  2022-06-22
  • 出版日期:  2022-11-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回