急性胰腺炎肝损伤的分子机制
DOI: 10.3969/j.issn.1001-5256.2022.11.045
-
摘要: 急性胰腺炎进展十分迅速,如不及时控制,可能引发多脏器损伤,更有甚者会因器官功能衰竭而死亡。目前因肝衰竭而死亡的急性胰腺炎患者比例仍较大。肝脏与胰腺在生理上相互联系,在病理上相互影响。本文通过胰腺与肝脏的生理联系、细胞因子、炎症反应、氧化应激、微循环障碍及肠道菌群移位等6个方面对急性胰腺炎肝损伤的分子机制进行阐述。Abstract: Acute pancreatitis often progresses rapidly, and if it is not controlled in time, it may lead to multiple organ injury and even death due to organ failure. At present, there is still a high proportion of patients with acute pancreatitis who died due to liver failure. The liver and the pancreas are interrelated physiologically and affect each other pathologically. This article elaborates on the molecular mechanism of liver injury in acute pancreatitis from the six aspects of the physiological relationship between the pancreas and the liver, cytokines, inflammatory response, oxidative stress, microcirculation disturbance, and intestinal flora translocation.
-
Key words:
- Acute Pancreatitis /
- Liver Injury /
- Cytokines
-
表 1 急性胰腺炎过程中细胞因子对肝脏的作用
Table 1. Effect of cytokines on liver during acute pancreatitis
细胞因子 对肝脏的作用机制 IL-17 促进Kupffer细胞极化为M1巨噬细胞,加重肝脏的炎症反应[9],IL-17可增强炎症反应过程中ERK的活性,诱导、加重肝损伤[10] IL-18 激活MAPK和PI3K/AKT信号通路诱导大量细胞因子产生,加重肝脏炎症损伤[11]。同时,还能够刺激IFNγ的产生,并增强T淋巴细胞和NK细胞的能力 IL-1β 诱导炎性细胞产生IL-6、IL-18、TNFα、ICAM-1、Es及趋化因子等,介导炎症反应、肝细胞凋亡等过程[12] NLRP-3 NLRP-3作为炎症反应的核心环节,其活化有利于半胱天冬酶原-1、IL-1β、IL-18等中下游促炎因子的活化[13],还能够通过阻碍肝脏炎症反应过程中线粒体自噬来加重肝缺血/再灌注过程中的损伤[14] IL-6 诱导STAT3磷酸化,CXCL1与G蛋白结合后传递损伤部位信息,促使白细胞向损伤部位移动[15]。作为CRP上游的炎症因子参与炎症和免疫反应,IL-6通过其信号转导因子gp130发挥功能,进而激活MAPK,启动JAK/STAT信号通路,促进急性胰腺炎肝损伤的发生[16] TNFα 激活T淋巴细胞,促进IL-1、IL-2、IL-6的分泌,诱发炎症反应,在高浓度时会破坏机体的免疫平衡,在炎症级联反应中起放大作用,释放具有单核细胞抑制作用的蛋白HMGB、HSP,继而激活单核细胞/巨噬细胞表达的TLR,释放细胞因子和趋化因子激活促炎反应[17] MIF 通过激活P38-MAPK和NF-κB信号传导途径促进巨噬细胞分泌IL-1、IL-6、IL-12、TNFα等炎症因子加重急性胰腺炎过程中的肝内胆管损伤和炎症反应[18] MCP-1 趋化单核细胞且激活单核细胞与免疫应答,与肝损伤的严重程度有关,反映肝巨噬细胞活化的程度[19] ICAM-1 参与白细胞和血管内皮细胞的黏附和聚集,使肝脏微血管通透性增加,血管内皮损伤,造成肝脏微循环障碍[20] MIP-2 激活Kupffer细胞释放,趋化和激活中性粒细胞释放多种炎症介质导致肝脏炎性损伤[21] ROS 参与蛋白酪氨酸磷酸化,激活NF-κB、JNK、MAPK、TXNIP/NLRP-3信号通路等炎性通路,下调PPARγ信号,促进炎性因子如IL-1、IL-6、TNFα、iNOS的产生。增加血清AST、ALT、TBil含量,加重肝损伤[22] 注:ERK,细胞外信号调节激酶;MAPK,丝裂原活化蛋白激酶;PI3K/AKT,磷脂酰肌醇3-激酶/蛋白激酶B;NK细胞,自然杀伤细胞;ICAM-1,细胞间黏附分子;Es,E-选择素;NLRP-3,核苷酸结合寡聚化结构域样受体蛋白3;STAT3,信号传导与转录激活因子3;CXCL1,趋化因子(CXC基序)配体1;JAK,非受体酪氨酸激酶;CRP,C反应蛋白;gp130,糖蛋白130;HSP,热休克蛋白;TLR,Toll样受体;MCP-1,单核细胞趋化因子1;MIP-2,巨噬细胞炎性蛋白2;ROS,活性氧;JNK,蛋白激酶;TXNIP,硫氧还蛋白互作蛋白;PPARγ,过氧化物酶体增殖物激活受体γ;iNOS,诱导型一氧化氮合酶。 -
[1] IANNUZZI JP, KING JA, LEONG JH, et al. Global incidence of acute pancreatitis is increasing over time: A systematic review and meta-analysis[J]. Gastroenterology, 2022, 162(1): 122-134. DOI: 10.1053/j.gastro.2021.09.043. [2] XIAO AY, TAN ML, WU LM, et al. Global incidence and mortality of pancreatic diseases: a systematic review, meta-analysis, and meta-regression of population-based cohort studies[J]. Lancet Gastroenterol Hepatol, 2016, 1(1): 45-55. DOI: 10.1016/S2468-1253(16)30004-8. [3] HALONEN KI, PETTILÄ V, LEPPÄNIEMI AK, et al. Multiple organ dysfunction associated with severe acute pancreatitis[J]. Crit Care Med, 2002, 30(6): 1274-1279. DOI: 10.1097/00003246-200206000-00019. [4] JIANG X, YAN YF, ZHONG R, et al. Clinical features of biliary acute pancreatitis versus hypertriglyceridemic acute pancreatitis[J]. J Clin Hepatol, 2020, 36(9): 2050-2055. DOI: 10.3969/j.issn.1001-5256.2020.09.028.蒋鑫, 严永峰, 钟瑞, 等. 胆源性急性胰腺炎与高甘油三酯血症性急性胰腺炎临床特点对比分析[J]. 临床肝胆病杂志, 2020, 36(9): 2050-2055. DOI: 10.3969/j.issn.1001-5256.2020.09.028. [5] EL SEBAE GK, MALATOS JM, CONE ME, et al. Single-cell murine genetic fate mapping reveals bipotential hepatoblasts and novel multi-organ endoderm progenitors[J]. Development, 2018, 145(19): dev168658. DOI: 10.1242/dev.168658. [6] COFFEY JC, WALSH D, BYRNES KG, et al. Mesentery - a 'New' organ[J]. Emerg Top Life Sci, 2020, 4(2): 191-206. DOI: 10.1042/ETLS20200006. [7] GUI Y, SUN JJ, YANG YH, et al. Effect of bilateral greater splanchnic nerve transection on hepatic injury in dogs with acute necrotizing pancreatitis[J]. J Clin Hepatol, 2018, 34(8): 1733-1739. DOI: 10.3969/j.issn.1001-5256.2018.08.028.桂洋, 孙君军, 杨延辉, 等. 内脏大神经切断对犬急性坏死性胰腺炎并发肝损伤的影响[J]. 临床肝胆病杂志, 2018, 34(8): 1733-1739. DOI: 10.3969/j.issn.1001-5256.2018.08.028. [8] WU J, ZHANG L, SHI J, et al. Macrophage phenotypic switch orchestrates the inflammation and repair/regeneration following acute pancreatitis injury[J]. EBioMedicine, 2020, 58: 102920. DOI: 10.1016/j.ebiom.2020.102920. [9] YANG Y, HAN CY, GUAN QB, et al. Interleukin-17-mediated inflammation promotes nonalcoholic fatty liver disease in mice with regulation of M1-type macrophage polarization[J]. Chin J Hepatol, 2018, 26(12): 916-921. DOI: 10.3760/cma.j.issn.1007-3418.2018.12.008.杨毅, 韩晨阳, 官俏兵, 等. 白细胞介素17通过促进巨噬细胞M1型极化调控小鼠非酒精性脂肪性肝病组织炎症反应的机制[J]. 中华肝脏病杂志, 2018, 26(12): 916-921. DOI: 10.3760/cma.j.issn.1007-3418.2018.12.008. [10] LEE HC, LIAO CC, DAY YJ, et al. IL-17 deficiency attenuates acetaminophen-induced hepatotoxicity in mice[J]. Toxicol Lett, 2018, 292: 20-30. DOI: 10.1016/j.toxlet.2018.04.021. [11] REX D, AGARWAL N, PRASAD T, et al. A comprehensive pathway map of IL-18-mediated signalling[J]. J Cell Commun Signal, 2020, 14(2): 257-266. DOI: 10.1007/s12079-019-00544-4. [12] KANY S, VOLLRATH JT, RELJA B. Cytokines in inflammatory disease[J]. Int J Mol Sci, 2019, 20(23): 6008. DOI: 10.3390/ijms20236008. [13] SHI C, YANG H, ZHANG Z. Involvement of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 inflammasome in the pathogenesis of liver diseases[J]. Front Cell Dev Biol, 2020, 8: 139. DOI: 10.3389/fcell.2020.00139. [14] XU Y, TANG Y, LU J, et al. PINK1-mediated mitophagy protects against hepatic ischemia/reperfusion injury by restraining NLRP3 inflammasome activation[J]. Free Radic Biol Med, 2020, 160: 871-886. DOI: 10.1016/j.freeradbiomed.2020.09.015. [15] ZHANG H, NEUHÖFER P, SONG L, et al. IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality[J]. J Clin Invest, 2013, 123(3): 1019-1031. DOI: 10.1172/JCI64931. [16] LESINA M, WÖRMANN SM, NEUHÖFER P, et al. Interleukin-6 in inflammatory and malignant diseases of the pancreas[J]. Semin Immunol, 2014, 26(1): 80-87. DOI: 10.1016/j.smim.2014.01.002. [17] TIEGS G, HORST AK. TNF in the liver: targeting a central player in inflammation[J]. Semin Immunopathol, 2022, 44(4): 445-459. DOI: 10.1007/s00281-022-00910-2. [18] WANG B, ZHAO KL, HU WJ, et al. Macrophage migration inhibitor promoted the intrahepatic bile duct injury in rats with severe acute pancreatitis[J]. Dig Dis Sci, 2019, 64(3): 759-772. DOI: 10.1007/s10620-018-5379-7. [19] QUECK A, BODE H, USCHNER FE, et al. Systemic MCP-1 levels derive mainly from injured liver and are associated with complications in cirrhosis[J]. Front Immunol, 2020, 11: 354. DOI: 10.3389/fimmu.2020.00354. [20] AMPOFO E, BERG JJ, MENGER MD, et al. Maslinic acid alleviates ischemia/reperfusion-induced inflammation by downregulation of NFκB-mediated adhesion molecule expression[J]. Sci Rep, 2019, 9(1): 6119. DOI: 10.1038/s41598-019-42465-7. [21] QIN CC, LIU YN, HU Y, et al. Macrophage inflammatory protein-2 as mediator of inflammation in acute liver injury[J]. World J Gastroenterol, 2017, 23(17): 3043-3052. DOI: 10.3748/wjg.v23.i17.3043. [22] LI Z, LIU T, FENG Y, et al. PPARγ alleviates sepsis-induced liver injury by inhibiting hepatocyte pyroptosis via inhibition of the ROS/TXNIP/NLRP3 signaling pathway[J]. Oxid Med Cell Longev, 2022, 2022: 1269747. DOI: 10.1155/2022/1269747. [23] LI M, ZHANG X, WANG B, et al. Effect of JAK2/STAT3 signaling pathway on liver injury associated with severe acute pancreatitis in rats[J]. Exp Ther Med, 2018, 16(3): 2013-2021. DOI: 10.3892/etm.2018.6433. [24] XU RH, XIU L, ZHANG YL, et al. Probiotic and hepatoprotective activity of lactobacillus isolated from Mongolian camel milk products[J]. Benef Microbes, 2019, 10(6): 699-710. DOI: 10.3920/BM2018.0131. [25] HOQUE R, FAROOQ A, GHANI A, et al. Lactate reduces liver and pancreatic injury in Toll-like receptor - and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity[J]. Gastroenterology, 2014, 146(7): 1763-1774. DOI: 10.1053/j.gastro.2014.03.014. [26] SENDLER M, van den BRANDT C, GLAUBITZ J, et al. NLRP3 inflammasome regulates development of systemic inflammatory response and compensatory anti-inflammatory response syndromes in mice with acute pancreatitis[J]. Gastroenterology, 2020, 158(1): 253-269. DOI: 10.1053/j.gastro.2019.09.040. [27] BICZO G, VEGH ET, SHALBUEVA N, et al. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models[J]. Gastroenterology, 2018, 154(3): 689-703. DOI: 10.1053/j.gastro.2017.10.012. [28] CHEN W, ZAI W, FAN J, et al. Interleukin-22 drives a metabolic adaptive reprogramming to maintain mitochondrial fitness and treat liver injury[J]. Theranostics, 2020, 10(13): 5879-5894. DOI: 10.7150/thno.43894. [29] YIN T, SHI Q, GUO WY, et al. Anti-oxidative stress role of hydrogen-rich saline and its effect of mitogen-activated protein kinases pathway on hepatic injury of severe acute pancreatitis[J]. Chin J Exp Surg, 2015, 32(1): 33-36. DOI: 10.3760/cma.j.issn.1001-9030.2015.01.012.殷涛, 石乔, 郭闻一, 等. 氢饱和生理盐水在重症急性胰腺炎肝损伤中的抗氧化应激作用及对丝裂原活化蛋白激酶通路的影响[J]. 中华实验外科杂志, 2015, 32(1): 33-36. DOI: 10.3760/cma.j.issn.1001-9030.2015.01.012. [30] ZHANG FH, SUN YH, FAN KL, et al. Protective effects of heme oxygenase-1 against severe acute pancreatitis via inhibition of tumor necrosis factor-α and augmentation of interleukin-10[J]. BMC Gastroenterol, 2017, 17(1): 100. DOI: 10.1186/s12876-017-0651-4. [31] LIANG KJ, WOODARD KT, WEAVER MA, et al. AAV-Nrf2 promotes protection and recovery in animal models of oxidative stress[J]. Mol Ther, 2017, 25(3): 765-779. DOI: 10.1016/j.ymthe.2016.12.016. [32] WERNER J, FERNÁNDEZ-DEL CASTILLO C, RIVERA JA, et al. On the protective mechanisms of nitric oxide in acute pancreatitis[J]. Gut, 1998, 43(3): 401-407. DOI: 10.1136/gut.43.3.401. [33] FENO S, BUTERA G, VECELLIO REANE D, et al. Crosstalk between calcium and ROS in pathophysiological conditions[J]. Oxid Med Cell Longev, 2019, 2019: 9324018. DOI: 10.1155/2019/9324018. [34] TURKYILMAZ S, CEKIC AB, USTA A, et al. Ethyl pyruvate treatment ameliorates pancreatic damage: evidence from a rat model of acute necrotizing pancreatitis[J]. Arch Med Sci, 2019, 15(1): 232-239. DOI: 10.5114/aoms.2017.65231. [35] D'HAESE J, WERNER J. Translational research for acute pancreatitis - which results have really influenced our therapy?[J]. Visc Med, 2018, 34(6): 436-438. DOI: 10.1159/000493890. [36] KE L, NI HB, TONG ZH, et al. Efficacy of continuous regional arterial infusion with low-molecular-weight heparin for severe acute pancreatitis in a porcine model[J]. Shock, 2014, 41(5): 443-448. DOI: 10.1097/SHK.0000000000000129. [37] KEITEL V, HÄUSSINGER D. Role of TGR5 (GPBAR1) in liver disease[J]. Semin Liver Dis, 2018, 38(4): 333-339. DOI: 10.1055/s-0038-1669940. [38] LI B, YANG N, LI C, et al. INT-777, a bile acid receptor agonist, extenuates pancreatic acinar cells necrosis in a mouse model of acute pancreatitis[J]. Biochem Biophys Res Commun, 2018, 503(1): 38-44. DOI: 10.1016/j.bbrc.2018.05.120. [39] van den BERG FF, HUGENHOLTZ F, BOERMEESTER MA, et al. Spatioregional assessment of the gut microbiota in experimental necrotizing pancreatitis[J]. BJS Open, 2021, 5(5): zrab061. DOI: 10.1093/bjsopen/zrab061. [40] ZHAO HB, JIA L, YAN QQ, et al. Effect of clostridium butyricum and butyrate on intestinal barrier functions: study of a rat model of severe acute pancreatitis with intra-abdominal hypertension[J]. Front Physiol, 2020, 11: 561061. DOI: 10.3389/fphys.2020.561061. [41] PATEL BK, PATEL KH, BHATIA M, et al. Gut microbiome in acute pancreatitis: A review based on current literature[J]. World J Gastroenterol, 2021, 27(30): 5019-5036. DOI: 10.3748/wjg.v27.i30.5019. [42] JIN M, ZHANG H, WU M, et al. Colonic interleukin-22 protects intestinal mucosal barrier and microbiota abundance in severe acute pancreatitis[J]. FASEB J, 2022, 36(3): e22174. DOI: 10.1096/fj.202101371R. [43] BAI J, BAI J, YANG M. Interleukin-22 attenuates acute pancreatitis-associated intestinal mucosa injury in mice via STAT3 activation[J]. Gut Liver, 2021, 15(5): 771-781. DOI: 10.5009/gnl20210.