胰腺癌患者纳米刀术后心肌损伤的危险因素分析
DOI: 10.3969/j.issn.1001-5256.2022.12.019
Risk factors for myocardial injury after Nano-Knife surgery in patients with pancreatic cancer
-
摘要:
目的 探讨胰腺癌患者纳米刀术后发生心肌损伤的危险因素,并建立预测风险模型的列线图。 方法 回顾性分析2020年9月—2021年11月于郑州大学第五附属医院行纳米刀治疗的92例胰腺癌患者的临床资料,以术后3天内出现血清肌钙蛋白I>0.03 ng/mL作为心肌损伤的诊断标准,将患者分为心肌损伤组(n=51)和非心肌损伤组(n=41), 收集所有患者的年龄、性别、BMI、美国麻醉师协会分级、吸烟史、酗酒史、术前合并症等基线资料。计量资料用组间比较采用Mann-Whitney U检验。计数资料组间比较采用χ2检验或Fisher检验。采用单因素和多因素Logistic回归分析筛选有统计学差异的变量,筛选出相关因素建立预测胰腺癌患者纳米刀术后发生心肌损伤风险的列线图。采用受试者工作特征曲线下面积(AUC)评估模型的区分能力和临床效用。 结果 相较于非心肌损伤组,心肌损伤组消融时间更长(χ2=7.410,P=0.006),探针数量更多(χ2=6.130,P=0.047), 术前合并高血压(χ2=12.124,P<0.001)、慢性肾脏病(χ2=12.829,P<0.001)者更多。单因素Logistic回归分析显示,肿瘤直径、消融时间、手术方式、探针数量、高血压史及慢性肾脏病史均与心肌损伤的发生有关(P值均<0.05);多因素Logistic回归分析显示,肿瘤直径[比值比(OR)=3.94, 95%CI: 1.09~14.18, P=0.036]、消融时间(OR=4.15, 95%CI: 1.30~13.27, P=0.016)、手术方式(OR=6.92, 95%CI: 1.92~25.07, P=0.003)及合并高血压史(OR=4.07,95%CI: 1.12~14.77, P=0.034)是胰腺癌患者纳米刀术后发生心肌损伤的独立危险因素。AUC=0.859表明,列线图具有较好的区分能力和临床效用。 结论 胰腺癌患者纳米刀术后心肌损伤发生率较高,术前合并高血压、肿瘤直径>4 cm、消融时间>1 h是心肌损伤发生的独立危险因素,手术方式(纳米刀+旁路吻合)能增加心肌损伤的风险,列线图对预测心肌损伤发生的风险有较好效果。 Abstract:Objective To investigate the risk factors for myocardial injury after Nano-Knife surgery in patients with pancreatic cancer, and to establish a nomogram model for risk prediction. Methods A retrospective analysis was performed for the clinical data of 92 patients with pancreatic cancer who underwent Nano-Knife surgery in The Fifth Affiliated Hospital of Zhengzhou University from September 2020 to November 2021, with serum cardiac troponin I > 0.03 ng/mL within 3 days after surgery as the diagnostic criteria for myocardial injury, the patients were divided into myocardial injury group with 51 patients and non-myocardial injury group with 41 patients. Related baseline data were collected for all patients, including age, sex, body mass index, American Society of Anesthesiologists classification, smoking history, alcohol abuse history, and preoperative comorbidities. The Mann-Whitney U test was used for comparison of continuous data between groups, and the chi-square test or the Fisher's exact test was used for comparison of categorical data between groups. Univariate and multivariate logistic regression analyses were used to screen out the variables with statistical significance, and the factors screened out were used to establish a nomogram for predicting the risk of myocardial injury after Nano-Knife surgery in patients with pancreatic cancer. The receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) were used to evaluate the discriminatory ability and clinical utility of the model. Results Compared with the non-myocardial injury group, the myocardial injury group had a significantly longer ablation time (χ2=7.410, P=0.006), a significantly greater number of probes (χ2=6.130, P=0.047), and a significantly higher proportion of patients with preoperative hypertension (χ2=12.124, P < 0.001) or chronic kidney disease (χ2=12.829, P < 0.001). The univariate logistic regression analysis showed that tumor diameter, ablation time, surgical procedure, number of probes, history of hypertension, and history of chronic kidney disease were associated with the development of myocardial injury (all P < 0.05), and the multivariate logistic regression analysis showed that tumor diameter (odds ratio [OR]= 3.94, 95% confidence interval [CI]: 1.09-14.18, P=0.036), ablation time (OR=4.15, 95%CI: 1.30-13.27, P=0.016), surgical procedure (OR=6.92, 95%CI: 1.92-25.07, P=0.003), and history of hypertension (OR=4.07, 95%CI: 1.12-14.77, P=0.034) were independent risk factors for myocardial injury after Nano-Knife surgery in patients with pancreatic cancer. An AUC of 0.859 showed that the nomogram had good discriminatory ability and clinical utility. Conclusion There is a relatively high incidence rate of myocardial injury after Nano-Knife surgery in patients with pancreatic cancer. Preoperative hypertension, tumor diameter > 4 cm, and ablation time > 1 hour are independent risk factors for myocardial injury, and the surgical procedure of Nano-Knife surgery and bypass anastomosis can increase the risk of myocardial injury. The nomogram has a good effect in predicting the risk of myocardial injury. -
Key words:
- Pancreatic Neoplasms /
- Nano-Knife /
- Cardiomyopathies
-
表 1 两组患者临床资料进行比较
Table 1. the clinical data of the two groups were compared
指标 心肌损伤组(n=51) 非心肌损伤组(n=41) 统计值 P值 性别[例(%)] χ2=0.601 0.438 女 27(52.9) 27(65.9) 男 24(47.1) 14(34.1) 年龄[例(%)] χ2=0.344 0.558 <65岁 22(43.1) 19(46.3) ≥65岁 29(56.9) 22(53.7) BMI 22.7(21.2~24.5) 22.0(19.6~23.8) Z=-1.603 0.109 肿瘤直径[例(%)] χ2=3.426 0.064 >4 cm 32(62.7) 15(36.6) ≤4 cm 19(37.3) 26(63.4) 糖尿病[例(%)] χ2=0.091 0.763 无 23(45.1) 19(46.3) 有 28(54.9) 22(53.7) 高血压[例(%)] χ2=12.124 <0.001 无 26(51.0) 35(85.4) 有 25(49.0) 6(14.6) 慢性肾脏病[例(%)] χ2=12.829 <0.001 无 20(39.2) 27(65.9) 有 31(60.8) 14(34.1) 吸烟[例(%)] χ2=0.015 0.903 否 42(82.4) 33(80.5) 是 9(17.6) 8(19.5) 酗酒[例(%)] χ2=0.030 0.862 否 32(62.7) 25(61.0) 是 19(37.3) 16(39.0) 消融时间[例(%)] χ2=7.410 0.006 ≤1 h 18(35.3) 33(80.5) >1 h 33(64.7) 8(19.5) 手术方式[例(%)] χ2=0.780 0.677 IRE 11(21.6) 29(70.7) IRE+吻合 31(60.8) 7(17.1) 经皮 9(17.6) 5(12.2) 探针数量[例(%)] χ2=6.130 0.047 2个 11(21.6) 30(73.2) 3个 10(19.6) 5(12.2) 4个 30(58.8) 6(14.6) 表 2 纳米刀术后发生心肌损伤的单因素分析结果
Table 2. Univariate analysis of myocardial injury after NanoKnife surgery
变量 OR(95%CI) P值 性别 0.213 女性 男性 1.71(0.73~4.00) 年龄 0.759 <65岁 ≥65岁 0.88(0.38~2.01) 糖尿病史 0.905 无 有 1.05(0.46~2.40) 吸烟 0.819 否 是 0.88(0.31~2.54) 酗酒 0.862 否 是 1.08(0.46~2.51) 肿瘤直径 0.014 ≤4 cm >4 cm 2.92(1.25~6.84) 消融时间 <0.001 ≤1 h >1 h 7.56(2.89~19.80) 手术方式 IRE IRE+吻合 11.68(3.99~34.19) <0.001 经皮 4.75(1.30~17.32) 0.018 探针数量 2个 3个 5.45(1.52~19.55) 0.001 4个 13.64(4.47~41.63) <0.001 高血压病史 0.001 无 有 5.61(2.01~15.64) 慢性肾脏病史 0.012 无 有 2.99(1.27~7.04) -
[1] SIEGELl RL, MILLER KD, JEMAL A, et al. Cancer Statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. DOI: 10.3322/caac.21590. [2] KWON W, THOMAS A, KLUGER MD, et al. Irreversible electroporation of locally advanced pancreatic cancer[J]. Semin Oncol, 2021, 48(1): 84-94. DOI: 10.1053/j.seminoncol.2021.02.004. [3] HOLLAND MM, BHUTIANI N, KRUSE EJ, et al. A prospective, multi-institution assessment of irreversible electroporation for treatment of locally advanced pancreatic adenocarcinoma: initial outcomes from the AHPBA pancreatic registry[J]. HPB (Oxford), 2019, 21(8): 1024-1031. DOI: 10.1016/j.hpb.2018.12.004. [4] TIMMER F, GEBOERS B, NIEUWENHUIZEN S, et al. Locally advanced pancreatic cancer: percutaneous management using ablation, brachytherapy, intra-arterial chemotherapy, and intra-tumoral immunotherapy[J]. Curr Oncol Rep, 2021, 23(6): 68. DOI: 10.1007/s11912-021-01057-3. [5] GARCIA PA, ROSSMEISL JH JR, NEAL NE 2ND, et al. A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure[J]. Biomed Eng Online, 2011, 10: 34. DOI: 10.1186/1475-925X-10-34. [6] KOSTRZEWA M, TUELUEMEN E, RUDIC B, et al. Cardiac impact of R-wave triggered irreversible electroporation therapy[J]. Heart Rhythm, 2018, 15(12): 1872-1879. DOI: 10.1016/j.hrthm.2018.07.013. [7] LI J, WANG J, ZHANG X, et al. Cardiac impact of high-frequency irreversible electroporation using an asymmetrical waveform on liver in vivo[J]. BMC Cardiovasc Disord, 2021, 21(1): 581. DOI: 10.1186/s12872-021-02412-9. [8] RUETZLER K, SMILOWITZ NR, BERGER JS, et al. Diagnosis and management of patients with myocardial injury after noncardiac surgery: a scientific statement from the american heart association[J]. Circulation, 2021, 144(19): e287-e305. DOI: 10.1161/CIR.0000000000001024. [9] NARAYANAN G, BILIMORIA MM, HOSEIN PJ, et al. Multicenter randomized controlled trial and registry study to assess the safety and efficacy of the NanoKnifeⓇ system for the ablation of stage 3 pancreatic adenocarcinoma: overview of study protocols[J]. BMC Cancer, 2021, 21(1): 785. DOI: 10.1186/s12885-021-08474-4. [10] GEBOERS B, SCHEFFER HJ, GRAYBILL PM, et al. High-voltage electrical pulses in oncology: irreversible electroporation, electrochemotherapy, gene electrotransfer, electrofusion, and electroimmunotherapy[J]. Radiology, 2020, 295(2): 254-272. DOI: 10.1148/radiol.2020192190. [11] RUARUS A, VROOMEN L, GEBOERS B, et al. Percutaneous irreversible electroporation in locally advanced and recurrent pancreatic cancer (PANFIRE-2): A multicenter, prospective, single-arm, phase Ⅱ study[J]. Radiology, 2020, 294(1): 212-220. DOI: 10.1148/radiol.2019191109. [12] DU PRÉ BC, VAN DRIEL VJ, van WESSEL H, et al. Minimal coronary artery damage by myocardial electroporation ablation[J]. Europace, 2013, 15(1): 144-149. DOI: 10.1093/europace/eus171. [13] STILLSTRÖM D, BEERMANN M, ENGSTRAND J, et al. Initial experience with irreversible electroporation of liver tumours[J]. Eur J Radiol Open, 2019, 6: 62-67. DOI: 10.1016/j.ejro.2019.01.004. [14] DRIGGIN E, MADHAVAN MV, BIKDELI B, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic[J]. J Am Coll Cardiol, 2020, 75(18): 2352-2371. DOI: 10.1016/j.jacc.2020.03.031. [15] MORENO MU, EIROS R, GAVIRA JJ, et al. The hypertensive myocardium: from microscopic lesions to clinical complications and outcomes[J]. Med Clin North Am, 2017, 101(1): 43-52. DOI: 10.1016/j.mcna.2016.08.002. [16] LACKNER I, WEBER B, PRESSMAR J, et al. Cardiac alterations following experimental hip fracture-inflammaging as independent risk factor[J]. Front Immunol, 2022, 13: 895888. DOI: 10.3389/fimmu.2022.895888. [17] SUGRUE A, VAIDYA V, WITT C, et al. Irreversible electroporation for catheter-based cardiac ablation: a systematic review of the preclinical experience[J]. J Interv Card Electrophysiol, 2019, 55(3): 251-265. DOI: 10.1007/s10840-019-00574-3. [18] ZHAO K, ZHANG Y, LI J, et al. Modified glucose-insulin-potassium regimen provides cardioprotection with improved tissue perfusion in patients undergoing cardiopulmonary bypass surgery[J]. J Am Heart Assoc, 2020, 9(6): e012376. DOI: 10.1161/JAHA.119.012376.