可利霉素对胰腺癌细胞生物学功能的影响
DOI: 10.3969/j.issn.1001-5256.2022.12.020
Mechanism of carrimycin in regulating the biological function of pancreatic cancer cells
-
摘要:
目的 探讨可利霉素(Carrimycin)对胰腺癌细胞生物学功能的影响。 方法 胰腺癌细胞MIA PaCa-2、BxPC-3、Panc-1和PATU 8988以0(对照组)、2、4、8和16 μmol/L的可利霉素处理24、48和72 h后,MTT法检测细胞活性;EdU细胞增殖实验检测可利霉素对胰腺癌细胞DNA复制能力的影响;集落形成实验检测可利霉素对胰腺癌细胞增殖能力的影响;流式细胞术分析可利霉素对胰腺癌细胞周期的影响;划痕愈合实验分析可利霉素对胰腺癌细胞迁移能力的影响;免疫蛋白印迹实验检测上皮细胞-间充质转化和细胞周期依赖性蛋白激酶抑制因子1A(P21)等标志物的表达水平;免疫荧光实验检测上皮间质转化相关标志物的表达水平。多组间比较采用方差分析,进一步两两比较采用LSD-t检验。 结果 与对照组相比,可利霉素可显著抑制MIA PaCa-2、BxPC-3、Panc-1和PATU 8988细胞的增殖活性,且呈药物浓度与时间依赖性(P值均<0.01);4、8、16 μmol/L可利霉素可显著降低PC细胞MIA PaCa-2(t值分别为2.378、4.984、18.970,P值均<0.05)及BxPC-3(t值分别4.879、6.089、9.521,P值均<0.01)的DNA复制能力;4、8、16 μmol/L可利霉素处理PC细胞14 d后,MIA PaCa-2(t值分别为5.889、11.240、15.840,P值均<0.001)和BxPC-3(t值分别为6.717、15.800、18.850,P值均<0.001)细胞的集落形成能力随着药物浓度的增加而明显减少。4、8、16 μmol/L可利霉素处理后MIA PaCa-2细胞G1期比例(t值分别为9.071、12.280、19.360,P值均<0.000 1)及BxPC-3细胞G1期比例(t值分别为3.061、4.962、8.868,P值均<0.05)均增加,MIA PaCa-2细胞S期比例(t值分别为2.316、4.165、5.562,P值均<0.05)及BxPC-3细胞S期比例(t值分别为2.424、3.264、5.744,P值均<0.05)均降低。Western Blot实验进一步证实,与对照组比较,周期相关蛋白P21在MIA PaCa-2(t值分别为5.437、6.453、8.799,P值均<0.001)和BxPC-3细胞(t值分别为25.130、44.750、52.960,P值均<0.000 1)中的表达水平随可利霉素用药浓度增加而逐渐上调。划痕愈合实验结果显示,0和4、8、16 μmol/L可利霉素处理12、24和48 h PC细胞MIA PaCa-2(P值均<0.05)及BxPC-3(P值均<0.05)的横向迁移能力明显减弱。Western blot实验结果显示,与对照组比较,4、8、16 μmol/L可利霉素处理后MIA PaCa-2(t值分别为2.388、4.899、5.819,P值均<0.05)及BxPC-3细胞(t值分别为2.533、5.836、6.774,P值均<0.05)中上皮标志物E-cadherin的表达明显上调,4、8、16 μmol/L可利霉素处理后MIA PaCa-2(t值分别为12.440、14.830、16.800,P值均<0.000 1)及BxPC-3细胞(t值分别为5.039、5.893、7.725,P值均<0.01)中间质标志物Snail的表达水平显著下调,4、8、16 μmol/L可利霉素处理后MIA PaCa-2(t值分别为3.105、7.752、11.200,P值均<0.05) 及BxPC-3细胞(t值分别为2.555、4.883、9.153,P值均<0.05)中间质标志物Vimentin的表达水平也显著下调。 结论 可利霉素可有效抑制胰腺癌细胞的增殖、迁移及上皮细胞-间充质转化进程,从而发挥其抗肿瘤的生物学活性。 Abstract:Objective To investigate the effect of carrimycin on the biological function of pancreatic cancer cells. Methods Pancreatic cancer cell lines MIA PaCa-2, BxPC-3, Panc-1, and PATU 8988 were treated with carrimycin at concentrations of 0 (control group), 2, 4, 8, and 16 μmol/L for 24, 48, and 72 hours. MTT assay was used to measure cell viability; EdU cell proliferation assay was used to observe the effect of carrimycin on DNA replication of pancreatic cancer cells; colony formation assay was used to observe the effect of carrimycin on the proliferation of pancreatic cancer cells; flow cytometry was used to analyze the effect of carrimycin on the cell cycle of pancreatic cancer cells; wound healing assay was used to analyze the effect of carrimycin on the migration of pancreatic cancer cells; Western blot was used to measure the expression levels of the markers such as epithelial-mesenchymal transition (EMT) and cell cycle-dependent protein kinase inhibitor 1A (P21); immunofluorescence assay were used to measure the expression levels of EMT-related markers. An analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. Results Compared with the control group, carrimycin significantly inhibited the proliferative activity of MIA PaCa-2, BxPC-3, Panc-1, and PATU 8988 cells in a concentration- and time-dependent manner (all P < 0.01); carrimycin at concentrations of 4, 8, and 16 μmol/L significantly reduced DNA replication in MIA PaCa-2 cells (t=2.378, 4.984, and 18.970, all P < 0.05) and BxPC-3 cells (t=4.879, 6.089, and 9.521, all P < 0.01); after treatment with carrimycin at concentrations of 4, 8, and 16 μmol/L, colony formation ability significantly decreased with the increase in drug concentration in MIA PaCa-2 cells (t=5.889, 11.240, and 15.840, all P < 0.001) and BxPC-3 cells (t=6.717, 15.800, and 18.850, all P < 0.001). After treatment with carrimycin at concentrations of 4, 8, and 16 μmol/L, there was a significant increase in the proportion of cells in G1 phase in MIA PaCa-2 cells (t=9.071, 12.280, and 19.360, all P < 0.0001) and BxPC-3 cells (t=3.061, 4.962, and 8.868, all P < 0.05), and there was a significant reduction in the proportion of cells in S phase in MIA PaCa-2 cells (t=2.316, 4.165, and 5.562, all P < 0.05) and BxPC-3 cells (t=2.424, 3.264, and 5.744, all P < 0.05). Western blot further demonstrated that compared with the control group, the expression level of the cell cycle-related protein P21 gradually increased with the increase in the concentration of carrimycin in MIA PaCa-2 cells (t=5.437, 6.453, and 8.799, all P < 0.001) and BxPC-3 cells (t=25.130, 44.750, and 52.960, all P < 0.000 1). Wound healing assay showed that after treatment for 12, 24, and 48 hours, carrimycin at concentrations of 0, 4, 8, and 16 μmol/L significantly reduced the lateral migration of MIA PaCa-2 cells (all P < 0.05) and BxPC-3 cells (all P < 0.05). Western blot showed that compared with the control group, carrimycin treatment at concentrations of 4, 8, and 16 μmol/L significantly upregulated the expression of the epithelial marker E-cadherin in MIA PaCa-2 cells (t=2.388, 4.899, and 5.819, all P < 0.05) and BxPC-3 cells (t=2.533, 5.836, and 6.774, all P < 0.05) and significantly downregulated the expression of the interstitial marker Snail in MIA PaCa-2 cells (t=12.440, 14.830, and 16.800, all P < 0.000 1) and BxPC-3 cells (t=5.039, 5.893, and 7.725, all P < 0.01), and it also significantly downregulated the expression of the interstitial marker Vimentin in MIA PaCa-2 cells (t=3.105, 7.752, and 11.200, all P < 0.05) and BxPC-3 cells (t=2.555, 4.883, and 9.153, all P < 0.05). Conclusion Carrimycin can effectively inhibit the proliferation, migration, and EMT process of pancreatic cancer cells, thereby exerting an antitumor biological activity. -
图 2 EdU及集落形成实验检测不同浓度的可利霉素对MIA PaCa-2和BxPC-3细胞增殖的抑制作用
注:a,EdU实验检测0和4、8、16 μmol/L可利霉素对PC细胞MIA PaCa-2和BxPC-3的DNA复制能力的影响;b,集落形成实验检测0和4、8、16 μmol/L可利霉素对PC细胞MIA PaCa-2和BxPC-3克隆形成能力的影响。*P<0.05,**P<0.01,***P<0.001,****P<0.000 1。
Figure 2. The inhibitory effects of different concentrations of Carrimycin on the proliferation of MIA PaCa-2 and BxPC-3 cells were detected by EdU and colony formation assay
图 3 细胞周期和Western Blot实验检测不同浓度的可利霉素对MIA PaCa-2和BxPC-3细胞周期的影响
注:a,细胞周期实验检测0和4、8、16 μmol/L可利霉素对PC细胞MIA PaCa-2和BxPC-3细胞周期的影响;b,Western blot实验检测0和4、8、16 μmol/L可利霉素处理后PC细胞MIA PaCa-2和BxPC-3中P21蛋白的表达量。*P<0.05,**P<0.01,***P<0.001,****P<0.0001。
Figure 3. Cell cycle and Western Blot experiments were performed to examine the effects of different concentrations of Carrimycin on the cell cycle of MIA PaCa-2 and BxPC-3 cells
图 4 不同浓度的可利霉素对MIA PaCa-2和BxPC-3细胞迁移及EMT进程的影响
注:a,划痕愈合实验检测0和4、8、16 μmol/L可利霉素对PC细胞MIA PaCa-2和BxPC-3迁移能力的影响;b,0、4、8、16 μmol/L可利霉素处理PC细胞MIA PaCa-2和BxPc-3细胞伤口愈合率;c,Western blot实验检测0和4、8、16 μmol/L可利霉素处理后PC细胞MIA PaCa-2和BxPC-3中EMT相关蛋白E-cadherin、Snail和Vimentin的表达水平;d,免疫荧光实验检测0和4、8、16 μmol/L可利霉素处理后PC细胞MIA PaCa-2和BxPC-3中E-cadherin和Vimentin的表达水平。*P<0.05,**P<0.01,***P<0.001,****P<0.000 1。
Figure 4. Effects of different concentrations of Carrimycin on migration and EMT progression of MIA PaCa-2 and BxPC-3 cells
表 1 不同浓度的可利霉素对MIA PaCa-2细胞和BxPC-3细胞迁移的影响
Table 1. Effect of carrimycin at different concentrations on the migration of MIA PaCa-2 cells and BxPC-3 cells migration
组别 对照组 4 μmol/L 8 μmol/L 16 μmol/L MIA PaCa-2细胞 12 h 15.23±2.84 11.97±1.90 8.58±1.05 2.53±0.64 24 h 25.08±1.98 21.11±2.23 14.08±2.48 5.36±1.49 48 h 28.31±1.53 23.63±2.06 17.93±1.12 12.06±1.79 BxPC-3细胞 12 h 18.15±2.15 14.54±1.91 7.61±2.01 5.80±1.53 24 h 38.28±1.74 31.80±3.45 19.50±2.64 15.08±1.14 48 h 50.75±2.35 39.71±2.64 29.50±2.47 24.89±2.31 -
[1] CHEN W, ZHENG R, BAADE PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. DOI: 10.3322/caac.21338. [2] General Office of National Health Commission. Standard for diagnosis and treatment of pancreatic cancer (2022 edition)[J]. J Clin Hepatol, 2022, 38(5): 1006-1015. DOI: 10.3969/j.issn.1001-5256.2022.05.007.国家卫生健康委办公厅. 胰腺癌诊疗指南(2022年版)[J]. 临床肝胆病杂志, 2022, 38(5): 1006-1015. DOI: 10.3969/j.issn.1001-5256.2022.05.007. [3] ZHU H, WEI M, XU J, et al. PARP inhibitors in pancreatic cancer: molecular mechanisms and clinical applications[J]. Mol Cancer, 2020, 19(1): 49. DOI: 10.1186/s12943-020-01167-9. [4] HAN A, XU R, LIU Y, et al. HSDL2 acts as a promoter in pancreatic cancer by regulating cell proliferation and lipid metabolism[J]. Onco Targets Ther, 2021, 14: 435-444. DOI: 10.2147/OTT.S287722. [5] NEOPTOLEMOS JP, KLEEFF J, MICHL P, et al. Therapeutic developments in pancreatic cancer: current and future perspectives[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(6): 333-348. DOI: 10.1038/s41575-018-0005-x. [6] HAO TY, HE WQ. Advances in metabolic engineering of macrolide antibiotics[J]. Chin J Biotech, 2021, 37(5): 1737-1747. DOI: 10.13345/j.cjb.200686.郝天怡, 赫卫清. 大环内酯类抗生素代谢工程的研究进展[J]. 生物工程学报, 2021, 37(5): 1737-1747. DOI: 10.13345/j.cjb.200686. [7] JIN Y, ZUO HX, LI MY, et al. Anti-tumor effects of carrimycin and monomeric isovalerylspiramycin I on hepatocellular carcinoma in vitro and in vivo[J]. Front Pharmacol, 2021, 12: 774231. DOI: 10.3389/fphar.2021.774231. [8] LIANG SY, ZHAO TC, ZHOU ZH, et al. Anti-tumor effect of carrimycin on oral squamous cell carcinoma cells in vitro and in vivo[J]. Transl Oncol, 2021, 14(6): 101074. DOI: 10.1016/j.tranon.2021.101074. [9] ZHANG XY, HAO RH, LIU F, et al. Progress in Application of Rapamycin in Tumor Treatment[J]. Food Drug, 2018, 20(1): 65-70. DOI: 10.3969/j.issn.1672-979X.2018.01.016.张晓元, 郝荣华, 刘飞, 等. 雷帕霉素在肿瘤治疗方面研究进展[J]. 食品与药品, 2018, 20(1): 65-70. DOI: 10.3969/j.issn.1672-979X.2018.01.016. [10] EDELMAN MJ, SHVARTSBEYN M. Epothilones in development for non—small-cell lung cancer: novel anti-tubulin agents with the potential to overcome taxane resistance[J]. Clin Lung Cancer, 2012, 13(3): 171-180. DOI: 10.1016/j.cllc.2011.02.005. [11] GIANNAKAKOU P, GUSSIO R, NOGALES E, et al. A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells[J]. Proc Natl Acad Sci U S A, 2000, 97(6): 2904-2909. DOI: 10.1073/pnas.040546297. [12] LI YL, SUN J, HU X, et al. Epothilone B induces apoptosis and enhances apoptotic effects of ABT-737 on human cancer cells via PI3K/AKT/mTOR pathway[J]. J Cancer Res Clin Oncol, 2016, 142(11): 2281-2289. DOI: 10.1007/s00432-016-2236-y. [13] CUI J, ZHOU J, HE W, et al. Targeting selenoprotein H in the nucleolus suppresses tumors and metastases by Isovalerylspiramycin I[J]. J Exp Clin Cancer Res, 2022, 41(1): 126. DOI: 10.1186/s13046-022-02350-0. [14] LIU Y, QUAN Y. Relationship between inflammatory microenvironment and epithelial-mesenchymal transition and its significance in pancreatic carcinoma[J]. Chin J Clin Res, 2018, 31(12): 1619-1623. DOI: 10.13429/j.cnki.cjcr.2018.12.006.刘宇, 全颖. 胰腺癌炎性微环境与细胞上皮间质转化的关系及意义[J]. 中国临床研究, 2018, 31(12): 1619-1623. DOI: 10.13429/j.cnki.cjcr.2018.12.006. [15] BAKIR B, CHIARELLA AM, PITARRESI JR, et al. EMT, MET, plasticity, and tumor metastasis[J]. Trends Cell Biol, 2020, 30(10): 764-776. DOI: 10.1016/j.tcb.2020.07.003. [16] YEUNG KT, YANG J. Epithelial-mesenchymal transition in tumor metastasis[J]. Mol Oncol, 2017, 11(1): 28-39. DOI: 10.1002/1878-0261.12017. [17] KONG HR, DAI SJ, CHEN H, et al. α-solanine inhibits epithelial-mesenchymal transition in trichostatin A-resistant human pancreatic cancer cells through the WNT signaling pathway[J]. J Hepatopancreatobiliary Surg, 2020, 32(2): 89-96. DOI: 10.11952/j.issn.1007-1954.2020.02.006.孔鸿儒, 戴胜杰, 陈豪, 等. α-龙葵碱通过WNT信号通路抑制曲古抑菌素A-耐药人胰腺癌细胞的上皮-间质转化进程[J]. 肝胆胰外科杂志, 2020, 32(2): 89-96. DOI: 10.11952/j.issn.1007-1954.2020.02.006. [18] LIU JB, QI M, LI QQ, et al. The mechanism of cordycepin in inhibition of pancreatic cancer stem cells proliferation and metastasis[J]. Acta Pharm Sin, 2017, 52(9): 1404-1409. DOI: 10.16438/j.0513-4870.2017-0353.刘建兵, 戚梦, 李巧琪, 等. 虫草素抑制胰腺癌干细胞增殖及转移的机制研究[J]. 药学学报, 2017, 52(9): 1404-1409. DOI: 10.16438/j.0513-4870.2017-0353.