中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沉默调节蛋白1在酒精性肝病中的作用机制及相关药物研究进展

刘甜恬 刘江凯 李素领 刘靓 张雅儒 张建文 李冰倩

引用本文:
Citation:

沉默调节蛋白1在酒精性肝病中的作用机制及相关药物研究进展

DOI: 10.3969/j.issn.1001-5256.2022.12.030
基金项目: 

国家自然科学基金(联合基金) (U1504825);

河南省高等学校重点科研项目 (20A360014);

河南省中医药拔尖人才培养项目资助 (Yuwei Traditional Chinese Medicine 2021 No.15)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:刘甜恬负责课题设计,资料分析,撰写论文;李素领负责修改论文;刘靓、张雅儒、张建文、李冰倩参与收集及分析文献资料;刘江凯负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    刘江凯,xmlc001@126.com

Advances in the mechanism of action of silent information regulator 1 in alcoholic liver disease and related pharmaceutical studies

Research funding: 

National Natural Science Foundation of China (Joint Fund) (U1504825);

Key Scientific Research Projects of Colleges and Universities in Henan Province (20A360014);

Henan Provincial Top talents training Program of Traditional Chinese Medicine (Yuwei Traditional Chinese Medicine 2021 No.15)

More Information
    Corresponding author: LIU Jiangkai, xmlc001@126.com (ORCID: 0000-0002-1529-5089)
  • 摘要: 酒精性肝病(ALD)是全球慢性肝病的主要病种之一,我国ALD发病率正逐年上升且呈年轻化发展态势。沉默调节蛋白1(SIRT1)是一种烟酰胺腺嘌呤二核苷酸依赖性的脱乙酰化酶,在细胞代谢、氧化应激、炎症反应等方面作用显著,有望成为ALD治疗新靶点。本文总结了SIRT1在ALD中的作用机制及相关药物研究,以期为进一步研究ALD发病机制及其潜在治疗靶标提供参考和策略。

     

  • 图  1  SIRT1调节ALD的机制

    Figure  1.  Mechanism of SIRT1 regulating ALD

  • [1] SEITZ HK, BATALLER R, CORTEZ-PINTO H, et al. Alcoholic liver disease[J]. Nat Rev DisPrimers, 2018, 4(1): 16. DOI: 10.1038/s41572-018-0014-7.
    [2] World Health Organization. Global status report on alcohol and health 2018[M]. World Health Organization, 2019.
    [3] WANG WJ, XIAO P, XU HQ, et al. Growing burden of alcoholic liver disease in China: A review[J]. World J Gastroenterol, 2019, 25(12): 1445-1456. DOI: 10.3748/wjg.v25.i12.1445.
    [4] LIU Y, SU L. Guidline for primary care of alcoholic liver disease(2019)[J]. J Clin Hepatol, 2021, 37(1): 36-40. DOI: 10.3969/j.issn.1001-5256.2021.01.008.

    刘岩, 苏琳. 酒精性肝病基层诊疗指南(2019年)[J]. 临床肝胆病杂志, 2021, 37(1): 36-40. DOI: 10.3969/j.issn.1001-5256.2021.01.008.
    [5] HYUN J, HAN J, LEE C, et al. Pathophysiological aspects of alcohol metabolism in the liver[J]. Int J Mol Sci, 2021, 22(11): 5717. DOI: 10.3390/ijms22115717.
    [6] SONG Q, CHEN Y, WANG J, et al. ER stress-induced upregulation of NNMT contributes to alcohol-related fatty liver development[J]. J Hepatol, 2020, 73(4): 783-793. DOI: 10.1016/j.jhep.2020.04.038.
    [7] KANG H, PARK YK, LEE JY. Nicotinamide riboside, an NAD+ precursor, attenuates inflammation and oxidative stress by activating sirtuin 1 in alcohol-stimulated macrophages[J]. Lab Invest, 2021, 101(9): 1225-1237. DOI: 10.1038/s41374-021-00599-1.
    [8] YIN H, HU M, LIANG X, et al. Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver[J]. Gastroenterology, 2014, 146(3): 801-811. DOI: 10.1053/j.gastro.2013.11.008.
    [9] CHEN C, ZHOU M, GE Y, et al. SIRT1 and aging related signaling pathways[J]. Mech Ageing Dev, 2020, 187: 111215. DOI: 10.1016/j.mad.2020.111215.
    [10] ZHOU Z, YE TJ, DECARO E, et al. Intestinal SIRT1 deficiency protects mice from ethanol-induced liver injury by mitigating ferroptosis[J]. Am J Pathol, 2020, 190(1): 82-92. DOI: 10.1016/j.ajpath.2019.09.012.
    [11] NAKAMURA K, ZHANG M, KAGEYAMA S, et al. Macrophage heme oxygenase-1-SIRT1-p53 axis regulates sterile inflammation in liver ischemia-reperfusion injury[J]. J Hepatol, 2017, 67(6): 1232-1242. DOI: 10.1016/j.jhep.2017.08.010.
    [12] HERSKOVITS AZ, GUARENTE L. Sirtuin deacetylases in neurodegenerative diseases of aging[J]. Cell Res, 2013, 23(6): 746-758. DOI: 10.1038/cr.2013.70.
    [13] TANNO M, SAKAMOTO J, MIURA T, et al. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1[J]. J Biol Chem, 2007, 282(9): 6823-6832. DOI: 10.1074/jbc.M609554200.
    [14] YANG X, DONG WB, LEI XP, et al. Resveratrol suppresses hyperoxia-induced nucleocytoplasmic shuttling of SIRT1 and ROS production in PBMC from preterm infants in vitro[J]. J Matern Fetal Neonatal Med, 2018, 31(9): 1142-1150. DOI: 10.1080/14767058.2017.1311310.
    [15] GOODMAN RP, MARKHARD AL, SHAH H, et al. Hepatic NADH reductive stress underlies common variation in metabolic traits[J]. Nature, 2020, 583(7814): 122-126. DOI: 10.1038/s41586-020-2337-2.
    [16] CUI X, CHEN Q, DONG Z, et al. Inactivation of Sirt1 in mouse livers protects against endotoxemic liver injury by acetylating and activating NF-κB[J]. Cell Death Dis, 2016, 7(10): e2403. DOI: 10.1038/cddis.2016.270.
    [17] DUAN FF, CHENG J, YANG S. Research progress on liver transplantation for alcoholic liver disease[J]. Organ Transplantation, 2020, 11(3): 413-418. DOI: 10.3969/j.issn.1674-7445.2020.03.016.

    段方方, 成军, 杨松. 酒精性肝病肝移植的研究进展[J]. 器官移植, 2020, 11(3): 413-418. DOI: 10.3969/j.issn.1674-7445.2020.03.016.
    [18] NOWAK AJ, RELJA B. The impact of acute or chronic alcohol intake on the NF-κB signaling pathway in alcohol-related liver disease[J]. Int J Mol Sci, 2020, 21(24): 9407. DOI: 10.3390/ijms21249407.
    [19] XIONG X, YU J, FAN R, et al. NAMPT overexpression alleviates alcohol-induced hepatic steatosis in mice[J]. PLoS One, 2019, 14(2): e0212523. DOI: 10.1371/journal.pone.0212523.
    [20] KANG H, KIM MB, PARK YK, et al. A mouse model of the regression of alcoholic hepatitis: Monitoring the regression of hepatic steatosis, inflammation, oxidative stress, and NAD+ metabolism upon alcohol withdrawal[J]. J Nutr Biochem, 2022, 99: 108852. DOI: 10.1016/j.jnutbio.2021.108852.
    [21] LIU CY, WANG M, YU HM, et al. Ferroptosis is involved in alcohol-induced cell death in vivo and in vitro[J]. Biosci Biotechnol Biochem, 2020, 84(8): 1621-1628. DOI: 10.1080/09168451.2020.1763155.
    [22] YOU M, ARTEEL GE. Effect of ethanol on lipid metabolism[J]. J Hepatol, 2019, 70(2): 237-248. DOI: 10.1016/j.jhep.2018.10.037.
    [23] PI A, JIANG K, DING Q, et al. Alcohol abstinence rescues hepatic steatosis and liver injury via improving metabolic reprogramming in chronic alcohol-fed mice[J]. Front Pharmacol, 2021, 12: 752148. DOI: 10.3389/fphar.2021.752148.
    [24] HOU Y, SU B, CHEN P, et al. Association of SIRT1 gene polymorphism and its expression for the risk of alcoholic fatty liver disease in the Han population[J]. Hepatol Int, 2018, 12(1): 56-66. DOI: 10.1007/s12072-017-9836-8.
    [25] SILVA J, SPATZ MH, FOLK C, et al. Dihydromyricetin improves mitochondrial outcomes in the liver of alcohol-fed mice via the AMPK/Sirt-1/PGC-1α signaling axis[J]. Alcohol, 2021, 91: 1-9. DOI: 10.1016/j.alcohol.2020.10.002.
    [26] NAGAPPAN A, KIM JH, JUNG DY, et al. Cryptotanshinone from the salvia miltiorrhiza bunge attenuates ethanol-induced liver injury by activation of AMPK/SIRT1 and Nrf2 signaling pathways[J]. Int J Mol Sci, 2019, 21(1): 265. DOI: 10.3390/ijms21010265.
    [27] LEE HI, YUN KW, SEO KI, et al. Scopoletin prevents alcohol-induced hepatic lipid accumulation by modulating the AMPK-SREBP pathway in diet-induced obese mice[J]. Metabolism, 2014, 63(4): 593-601. DOI: 10.1016/j.metabol.2014.01.003.
    [28] PONUGOTI B, KIM DH, XIAO Z, et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism[J]. J Biol Chem, 2010, 285(44): 33959-33970. DOI: 10.1074/jbc.M110.122978.
    [29] BI L, JIANG Z, ZHOU J. The role of lipin-1 in the pathogenesis of alcoholic fatty liver[J]. Alcohol Alcohol, 2015, 50(2): 146-151. DOI: 10.1093/alcalc/agu102.
    [30] LI Y, ZHOU J. Roles of silent information regulator 1-serine/arginine-rich splicing factor 10-lipin 1 axis in the pathogenesis of alcohol fatty liver disease[J]. Exp Biol Med (Maywood), 2017, 242(11): 1117-1125. DOI: 10.1177/1535370217707729.
    [31] YIN H, HU M, ZHANG R, et al. MicroRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by down-regulating SIRT1[J]. J Biol Chem, 2012, 287(13): 9817-9826. DOI: 10.1074/jbc.M111.333534.
    [32] YAO YL, HAN X, LI ZM, et al. Acanthoic acid can partially prevent alcohol exposure-induced liver lipid deposition and inflammation[J]. Front Pharmacol, 2017, 8: 134. DOI: 10.3389/fphar.2017.00134.
    [33] CHEN X, XU Y, DENNING KL, et al. PPARα agonist WY-14, 643 enhances ethanol metabolism in mice: Role of catalase[J]. Free Radic Biol Med, 2021, 169: 283-293. DOI: 10.1016/j.freeradbiomed.2021.04.018.
    [34] YUE R, CHEN GY, XIE G, et al. Activation of PPARα-catalase pathway reverses alcoholic liver injury via upregulating NAD synthesis and accelerating alcohol clearance[J]. Free Radic Biol Med, 2021, 174: 249-263. DOI: 10.1016/j.freeradbiomed.2021.08.005.
    [35] ATTAL N, MARRERO E, THOMPSON KJ, et al. Cytochrome P4502E1-dependent hepaticethanol metabolism induces fatty acid-binding protein 4 and steatosis[J]. Alcohol Clin Exp Res, 2022, 46(6): 928-940. DOI: 10.1111/acer.14828.
    [36] CHEN H, SHEN F, SHERBAN A, et al. DEP domain-containing mTOR-interacting protein suppresses lipogenesis and ameliorates hepatic steatosis and acute-on-chronic liver injury in alcoholic liver disease[J]. Hepatology, 2018, 68(2): 496-514. DOI: 10.1002/hep.29849.
    [37] LEE SE, KOH H, JOO DJ, et al. Induction of SIRT1 by melatonin improves alcohol-mediated oxidative liver injury by disrupting the CRBN-YY1-CYP2E1 signaling pathway[J]. J Pineal Res, 2020, 68(3): e12638. DOI: 10.1111/jpi.12638.
    [38] ZHOU Y, WANG S, WAN T, et al. Cyanidin-3-O-β-glucoside inactivates NLRP3 inflammasome and alleviates alcoholic steatohepatitis via SirT1/NF-κB signaling pathway[J]. Free Radic Biol Med, 2020, 160: 334-341. DOI: 10.1016/j.freeradbiomed.2020.08.006.
    [39] RAMIREZ T, LI YM, YIN S, et al. Aging aggravates alcoholic liver injury and fibrosis in mice by downregulating sirtuin 1 expression[J]. J Hepatol, 2017, 66(3): 601-609. DOI: 10.1016/j.jhep.2016.11.004.
    [40] WU Y, LIU X, ZHOU Q, et al. Silent information regulator 1 (SIRT1) ameliorates liver fibrosis via promoting activated stellate cell apoptosis and reversion[J]. Toxicol Appl Pharmacol, 2015, 289(2): 163-176. DOI: 10.1016/j.taap.2015.09.028.
    [41] KIM MJ, AN HJ, KIM DH, et al. Novel SIRT1 activator MHY2233 improves glucose tolerance and reduces hepatic lipid accumulation in db/db mice[J]. Bioorg Med Chem Lett, 2018, 28(4): 684-688. DOI: 10.1016/j.bmcl.2018.01.021.
    [42] LIU X, ZHAO H, LUO C, et al. Acetaminophen responsive miR-19b modulates SIRT1/Nrf2 signaling pathway in drug-induced hepatotoxicity[J]. Toxicol Sci, 2019, 170(2): 476-488. DOI: 10.1093/toxsci/kfz095.
    [43] RAWAT D, CHHONKER SK, NAIK RA, et al. Modulation of antioxidant enzymes, SIRT1 and NF-κB by resveratrol and nicotinamide in alcohol-aflatoxin B1-induced hepatocellular carcinoma[J]. J Biochem Mol Toxicol, 2021, 35(1): e22625. DOI: 10.1002/jbt.22625.
    [44] ZHOU YN, XU PJ, DENG CF, et al. Chrysin alleviated ethanol-induced alcoholic liver injury via SIRT1/AMPK signaling pathway[J]. Chin Pharmacol Bull, 2022, 38(1): 159-160. DOI: 10.3969/j.issn.1001-1978.2022.01.028.

    周禹柠, 徐培杰, 邓楚凡, 等. 白杨素通过SIRT1/AMPK信号通路缓解乙醇诱导的酒精性肝损伤[J]. 中国药理学通报, 2022, 38(1): 159-160. DOI: 10.3969/j.issn.1001-1978.2022.01.028.
    [45] YANG T, SONG HP, CHEN Z, et al. Effect and mechanism of Yinchenhao decoction on acute alcoholic liver injury based on SIRT1/AMPK signaling pathway[J]. Pharmocol Clin Chin Mater Med, 2022, 38(1): 36-40. DOI: 10.13412/j.cnki.zyyl.zyyl.2022.01.019.

    杨焘, 宋厚盼, 陈哲, 等. 基于SIRT1/AMPK信号通路探讨茵陈蒿汤治疗急性酒精性肝损伤的效应及机制[J]. 中药药理与临床, 2022, 38(1): 36-40. DOI: 10.13412/j.cnki.zyyl.2022.01.019.
    [46] WEI Z, JIA J, HENG G, et al. Sirtuin-1/Mitochondrial ribosomal protein S5 axis enhances the metabolic flexibility of liver cancer stem cells[J]. Hepatology, 2019, 70(4): 1197-1213. DOI: 10.1002/hep.30622.
  • 加载中
图(1)
计量
  • 文章访问数:  1742
  • HTML全文浏览量:  960
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-07
  • 录用日期:  2022-06-17
  • 出版日期:  2022-12-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回