Role of organelle interaction in the development and progression of nonalcoholic fatty liver disease
-
摘要: 细胞器除了具有各自特定的功能外,还可与其他细胞器相互作用完成重要的生理功能。细胞器之间相互作用的异常与疾病的发生发展密切相关。近年来,细胞器之间相互作用在非酒精性脂肪性肝病(NAFLD)发生发展中的作用受到关注,特别是线粒体、脂滴与其他细胞器之间的相互作用。Abstract: In addition to its own specific functions, an organelle can also interact with other organelles to complete important physiological functions. The disorders of organelle interactions are closely associated the development and progression of various diseases. In recent years, the role of organelle interactions has attracted more attention in the progression of nonalcoholic fatty liver disease, especially the interactions between mitochondria, lipid droplets, and other organelles.
-
Key words:
- Non-alcoholic Fatty Liver Disease /
- Organelles /
- Mitochondria /
- Lipid Droplets
-
图 1 线粒体与其他细胞器之间的相互作用
注:FFA,游离脂肪酸;IP3R,三磷酸肌醇受体;VDAC,电压依赖性阴离子选择性通道蛋白;GRP75,葡萄糖调节蛋白75;IFN2,肌动蛋白成核因子2;Spire1C,与甲酸结合的肌动蛋白成核蛋白1C;Mfn2,线粒体融合蛋白2;Plin1,脂滴包被蛋白1;Plin5,脂滴包被蛋白5;ECI2,烯酰辅酶A异构酶2;TOM20,线粒体外膜转位酶20;RAB7,Ras相关GTP结合蛋白7。图中使用的线粒体及高尔基体模式图来自BioRender网站。
Figure 1. Interactions between mitochondria and other organelles
-
[1] COHEN S, VALM AM, LIPPINCOTT-SCHWARTZ J. Interacting organelles[J]. Curr Opin Cell Biol, 2018, 53: 84-91. DOI: 10.1016/j.ceb.2018.06.003. [2] HUANG SZ, WANG GJ, XIE Y. Advances in molecular mechanisms of organelle interaction and their role in disease development[J]. J Chin Pharm Univ, 2019, 50(4): 389-396. DOI: 10.11665/j.issn.1000-5048.20190402.黄淑贞, 王广基, 谢媛. 细胞器互作分子机制及其在疾病发生发展中的作用[J]. 中国药科大学学报, 2019, 50(4): 389-396. DOI: 10.11665/j.issn.1000-5048.20190402. [3] LAZARUS JV, MARK HE, ANSTEE QM, et al. Advancing the global public health agenda for NAFLD: a consensus statement[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(1): 60-78. DOI: 10.1038/s41575-021-00523-4. [4] CAI TY, HUANG MZ, CHEN H, et al. Mechanism of action of mitochondrial disorders in nonalcoholic steatohepatitis[J]. J Clin Hepatol, 2021, 37(8): 1953-1956. DOI: 10.3969/j.issn.1001-5256.2021.08.045.蔡恬莹, 黄美州, 陈浩, 等. 线粒体障碍在非酒精性脂肪性肝炎中的作用机制[J]. 临床肝胆病杂志, 2021, 37(8): 1953-1956. DOI: 10.3969/j.issn.1001-5256.2021.08.045. [5] LEE J, PARK JS, ROH YS. Molecular insights into the role of mitochondria in non-alcoholic fatty liver disease[J]. Arch Pharm Res, 2019, 42(11): 935-946. DOI: 10.1007/s12272-019-01178-1. [6] AJAZ S, MCPHAIL MJ, GNUDI L, et al. Mitochondrial dysfunction as a mechanistic biomarker in patients with non-alcoholic fatty liver disease (NAFLD)[J]. Mitochondrion, 2021, 57: 119-130. DOI: 10.1016/j.mito.2020.12.010. [7] RAKOTONIRINA-RICQUEBOURG R, COSTA V, TEIXEIRA V. Hello from the other side: Membrane contact of lipid droplets with other organelles and subsequent functional implications[J]. Prog Lipid Res, 2022, 85: 101141. DOI: 10.1016/j.plipres.2021.101141. [8] VALM AM, COHEN S, LEGANT WR, et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome[J]. Nature, 2017, 546(7656): 162-167. DOI: 10.1038/nature22369. [9] PRINZ WA, TOULMAY A, BALLA T. The functional universe of membrane contact sites[J]. Nat Rev Mol Cell Biol, 2020, 21(1): 7-24. DOI: 10.1038/s41580-019-0180-9. [10] FERNÁNDEZ-BUSNADIEGO R, SAHEKI Y, de CAMILLI P. Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum-plasma membrane contact sites[J]. Proc Natl Acad Sci U S A, 2015, 112(16): E2004-2013. DOI: 10.1073/pnas.1503191112. [11] WEST M, ZUREK N, HOENGER A, et al. A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature[J]. J Cell Biol, 2011, 193(2): 333-346. DOI: 10.1083/jcb.201011039. [12] LEES JA, MESSA M, SUN EW, et al. Lipid transport by TMEM24 at ER-plasma membrane contacts regulates pulsatile insulin secretion[J]. Science, 2017, 355(6326): eaah6171. DOI: 10.1126/science.aah6171. [13] DICKSON EJ. Endoplasmic reticulum-plasma membrane contacts regulate cellular excitability[J]. Adv Exp Med Biol, 2017, 997: 95-109. DOI: 10.1007/978-981-10-4567-7_7. [14] WONG LH, GATTA AT, LEVINE TP. Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes[J]. Nat Rev Mol Cell Biol, 2019, 20(2): 85-101. DOI: 10.1038/s41580-018-0071-5. [15] KOROBOVA F, RAMABHADRAN V, HIGGS HN. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2[J]. Science, 2013, 339(6118): 464-467. DOI: 10.1126/science.1228360. [16] MANOR U, BARTHOLOMEW S, GOLANI G, et al. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division[J]. Elife, 2015, 4. DOI: 10.7554/eLife.08828. [17] WONG YC, YSSELSTEIN D, KRAINC D. Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis[J]. Nature, 2018, 554(7692): 382-386. DOI: 10.1038/nature25486. [18] GUO Y, LI D, ZHANG S, et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales[J]. Cell, 2018, 175(5): 1430-1442. e17. DOI: 10.1016/j.cell.2018.09.057. [19] GORDALIZA-ALAGUERO I, CANTÓ C, ZORZANO A. Metabolic implications of organelle-mitochondria communication[J]. EMBO Rep, 2019, 20(9): e47928. DOI: 10.15252/embr.201947928. [20] KEENAN SN, WATT MJ, MONTGOMERY MK. Inter-organelle communication in the pathogenesis of mitochondrial dysfunction and insulin resistance[J]. Curr Diab Rep, 2020, 20(6): 20. DOI: 10.1007/s11892-020-01300-4. [21] ZHANG P, KONJA D, ZHANG Y, et al. Communications between mitochondria and endoplasmic reticulum in the regulation of metabolic homeostasis[J]. Cells, 2021, 10(9): 2195. DOI: 10.3390/cells10092195. [22] WANG J, HE W, TSAI PJ, et al. Mutual interaction between endoplasmic reticulum and mitochondria in nonalcoholic fatty liver disease[J]. Lipids Health Dis, 2020, 19(1): 72. DOI: 10.1186/s12944-020-01210-0. [23] HERNÁNDEZ-ALVAREZ MI, SEBASTIÁN D, VIVES S, et al. Deficient endoplasmic reticulum-mitochondrial phosphatidylserine transfer causes liver disease[J]. Cell, 2019, 177(4): 881-895. e17. DOI: 10.1016/j.cell.2019.04.010. [24] BENADOR IY, VELIOVA M, MAHDAVIANI K, et al. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion[J]. Cell Metab, 2018, 27(4): 869-885. e6. DOI: 10.1016/j.cmet.2018.03.003. [25] BENADOR IY, VELIOVA M, LIESA M, et al. Mitochondria bound to lipid droplets: Where mitochondrial dynamics regulate lipid storage and utilization[J]. Cell Metab, 2019, 29(4): 827-835. DOI: 10.1016/j.cmet.2019.02.011. [26] CUI L, LIU P. Two types of contact between lipid droplets and mitochondria[J]. Front Cell Dev Biol, 2020, 8: 618322. DOI: 10.3389/fcell.2020.618322. [27] VELIOVA M, PETCHERSKI A, LIESA M, et al. The biology of lipid droplet-bound mitochondria[J]. Semin Cell Dev Biol, 2020, 108: 55-64. DOI: 10.1016/j.semcdb.2020.04.013. [28] SHUM M, NGO J, SHIRIHAI OS, et al. Mitochondrial oxidative function in NAFLD: Friend or foe?[J]. Mol Metab, 2021, 50: 101134. DOI: 10.1016/j.molmet.2020.101134. [29] ARRUDA AP, PERS BM, PARLAKGVL G, et al. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity[J]. Nat Med, 2014, 20(12): 1427-1435. DOI: 10.1038/nm.3735. [30] KEENAN SN, MEEX RC, LO J, et al. Perilipin 5 deletion in hepatocytes remodels lipid metabolism and causes hepatic insulin resistance in mice[J]. Diabetes, 2019, 68(3): 543-555. DOI: 10.2337/db18-0670. [31] LI H, SONG Y, ZHANG LJ, et al. LSDP5 enhances triglyceride storage in hepatocytes by influencing lipolysis and fatty acid β-oxidation of lipid droplets[J]. PLoS One, 2012, 7(6): e36712. DOI: 10.1371/journal.pone.0036712. [32] TAN Y, JIN Y, WANG Q, et al. Perilipin 5 protects against cellular oxidative stress by enhancing mitochondrial function in HepG2 cells[J]. Cells, 2019, 8(10): 1241. DOI: 10.3390/cells8101241. [33] WANG C, ZHAO Y, GAO X, et al. Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis[J]. Hepatology, 2015, 61(3): 870-882. DOI: 10.1002/hep.27409. [34] VARGHESE M, KIMLER VA, GHAZI FR, et al. Adipocyte lipolysis affects Perilipin 5 and cristae organization at the cardiac lipid droplet-mitochondrial interface[J]. Sci Rep, 2019, 9(1): 4734. DOI: 10.1038/s41598-019-41329-4. [35] SCHULDINER M, BOHNERT M. A different kind of love - lipid droplet contact sites[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2017, 1862(10 Pt B): 1188-1196. DOI: 10.1016/j.bbalip.2017.06.005. [36] FRANSEN M, LISMONT C, WALTON P. The peroxisome-mitochondria connection: How and why?[J]. Int J Mol Sci, 2017, 18(6): 1126. DOI: 10.3390/ijms18061126. [37] FAN J, LI X, ISSOP L, et al. ACBD2/ECI2-mediated peroxisome-mitochondria interactions in leydig cell steroid biosynthesis[J]. Mol Endocrinol, 2016, 30(7): 763-782. DOI: 10.1210/me.2016-1008. [38] COHEN S. Lipid droplets as organelles[J]. Int Rev Cell Mol Biol, 2018, 337: 83-110. DOI: 10.1016/bs.ircmb.2017.12.007. [39] OLZMANN JA, CARVALHO P. Dynamics and functions of lipid droplets[J]. Nat Rev Mol Cell Biol, 2019, 20(3): 137-155. DOI: 10.1038/s41580-018-0085-z. [40] RENNE MF, HARIRI H. Lipid droplet-organelle contact sites as hubs for fatty acid metabolism, trafficking, and metabolic channeling[J]. Front Cell Dev Biol, 2021, 9: 726261. DOI: 10.3389/fcell.2021.726261. [41] HERKER E, VIEYRES G, BELLER M, et al. Lipid droplet contact sites in health and disease[J]. Trends Cell Biol, 2021, 31(5): 345-358. DOI: 10.1016/j.tcb.2021.01.004. [42] SEEBACHER F, ZEIGERER A, KORY N, et al. Hepatic lipid droplet homeostasis and fatty liver disease[J]. Semin Cell Dev Biol, 2020, 108: 72-81. DOI: 10.1016/j.semcdb.2020.04.011. [43] MASHEK DG. Hepatic lipid droplets: A balancing act between energy storage and metabolic dysfunction in NAFLD[J]. Mol Metab, 2021, 50: 101115. DOI: 10.1016/j.molmet.2020.101115. [44] SUZUKI M. Regulation of lipid metabolism via a connection between the endoplasmic reticulum and lipid droplets[J]. Anat Sci Int, 2017, 92(1): 50-54. DOI: 10.1007/s12565-016-0378-2. [45] WU H, CARVALHO P, VOELTZ GK. Here, there, and everywhere: The importance of ER membrane contact sites[J]. Science, 2018, 361(6401): eaan5835. DOI: 10.1126/science.aan5835. [46] SHAO YL, FAN JG. The source and destination of hepatic fat in patients with nonalcoholic fatty liver disease[J]. Int J Dig Dis, 2019, 39(5): 316-320. DOI: 10.3969/j.issn.1673-534X.2019.05.003.邵幼林, 范建高. 非酒精性脂肪性肝病患者肝脏脂肪的来源与去路[J]. 国际消化病杂志, 2019, 39(5): 316-320. DOI: 10.3969/j.issn.1673-534X.2019.05.003. [47] KRAHMER N, NAJAFI B, SCHUEDER F, et al. Organellar proteomics and phospho-proteomics reveal subcellular reorganization in diet-induced hepatic steatosis[J]. Dev Cell, 2018, 47(2): 205-221. e7. DOI: 10.1016/j.devcel.2018.09.017. [48] FILALI-MOUNCEF Y, HUNTER C, ROCCIO F, et al. The ménage à trois of autophagy, lipid droplets and liver disease[J]. Autophagy, 2022, 18(1): 50-72. DOI: 10.1080/15548627.2021.1895658.