白色脂肪棕色化对非酒精性脂肪性肝病的影响
DOI: 10.3969/j.issn.1001-5256.2023.04.025
利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:赵晨露负责查阅文献和撰写文章;周铖、尚东方、刘素彤、石俊豪、王晓杰负责查阅收集文献;赵文霞负责拟定写作思路,指导文章修改与定稿。
-
摘要: 非酒精性脂肪性肝病(NAFLD)是由于脂肪代谢功能异常而出现大量脂肪类物质在肝细胞中蓄积的慢性肝病。常规的抗炎降酶治疗效果不佳,恢复人体脂类物质的正常生物合成与代谢是NAFLD的治疗关键。棕色脂肪已被证明可通过增强机体胰岛素敏感性、调节脂质代谢而改善代谢相关性疾病,促进人体白色脂肪棕色化治疗NAFLD受到了医学界的广泛关注。本文重点综述了白色脂肪棕色化改善NAFLD的作用机制,总结了促进白色脂肪棕色化的肝因子,为NAFLD的临床治疗提供新思路。Abstract: Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease in which a large amount of fat accumulates in hepatocytes due to lipid metabolism disorders. Conventional anti-inflammatory and transaminase-lowering treatment regimens often have an unsatisfactory therapeutic effect, and restoring the normal biosynthesis and metabolism of lipids is the key to the treatment of NAFLD. Studies have shown that brown adipose tissue can improve metabolic diseases by enhancing insulin sensitivity and regulating lipid metabolism, and the treatment of NAFLD by promoting white fat browning has attracted wide attention in the medical field. This article reviews the mechanism of white fat browning in improving NAFLD and summarizes the hepatokines that can promote white fat browning, so as to provide new ideas for the clinical treatment of NAFLD.
-
[1] National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association; Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease: A 2018 update[J]. J Clin Hepatol, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007. [2] BRAILLON A. Nonalcoholic steatohepatitis and hepatocellular carcinoma: Crying wolf or promoting healthy living?[J]. Clin Gastroenterol Hepatol, 2019, 17(11): 2383. DOI: 10.1016/j.cgh.2019.04.029. [3] ZHOU J, ZHOU F, WANG W, et al. Epidemiological features of NAFLD from 1999 to 2018 in China[J]. Hepatology, 2020, 71(5): 1851-1864. DOI: 10.1002/hep.31150. [4] ESLAM M, SANYAL AJ, GEORGE J, et al. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158(7): 1999-2014.e1. DOI: 10.1053/j.gastro.2019.11.312. [5] ZENG J, FAN JG. Clinical significance of renaming nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2020, 36(6): 1205-1207. DOI: 10.3969/j.issn.1001-5256.2020.06.002.曾静, 范建高. 非酒精性脂肪性肝病更名的临床意义[J]. 临床肝胆病杂志, 2020, 36(6): 1205-1207. DOI: 10.3969/j.issn.1001-5256.2020.06.002. [6] MICHURINA SS, STAFEEV IS, MENSHIKOV MY, et al. Mitochondrial dynamics keep balance of nutrient combustion in thermogenic adipocytes[J]. Mitochondrion, 2021, 59: 157-168. DOI: 10.1016/j.mito.2021.05.001. [7] QIAN S, TANG Y, TANG QQ. Adipose tissue plasticity and the pleiotropic roles of BMP signaling[J]. J Biol Chem, 2021, 296: 100678. DOI: 10.1016/j.jbc.2021.100678. [8] WANG Z, WANG QA, LIU Y, et al. Energy metabolism in brown adipose tissue[J]. FEBS J, 2021, 288(12): 3647-3662. DOI: 10.1111/febs.16015. [9] PILKINGTON AC, PAZ HA, WANKHADE UD. Beige adipose tissue identification and marker specificity-overview[J]. Front Endocrinol (Lausanne), 2021, 12: 599134. DOI: 10.3389/fendo.2021.599134. [10] TABUCHI C, SUL HS. Corrigendum: Signaling pathways regulating thermogenesis[J]. Front Endocrinol (Lausanne), 2021, 12: 698619. DOI: 10.3389/fendo.2021.698619. [11] KAISANLAHTI A, GLUMOFF T. Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes[J]. J Physiol Biochem, 2019, 75(1): 1-10. DOI: 10.1007/s13105-018-0658-5. [12] LIU Q, NIU CY. From "two hit theory" to "multiple hit theory": Implications of evolution of pathogenesis concepts for treatment of non-alcoholic fatty liver disease[J]. World Chin J Dig, 2019, 27(19): 1171-1178. DOI: 10.11569/wcjd.v27.i19.1171.刘勤, 牛春燕. 由"二次打击"到"多重打击": 发病机制的演变带给非酒精性脂肪性肝病的治疗启示[J]. 世界华人消化杂志, 2019, 27(19): 1171-1178. DOI: 10.11569/wcjd.v27.i19.1171. [13] CANNON B, NEDERGAARD J. Brown adipose tissue: function and physiological significance[J]. Physiol Rev, 2004, 84(1): 277-359. DOI: 10.1152/physrev.00015.2003. [14] ORAVA J, NUUTILA P, LIDELL ME, et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin[J]. Cell Metab, 2011, 14(2): 272-279. DOI: 10.1016/j.cmet.2011.06.012. [15] ZHANG Q, YE H, MIAO Q, et al. Differences in the metabolic status of healthy adults with and without active brown adipose tissue[J]. Wien Klin Wochenschr, 2013, 125(21-22): 687-695. DOI: 10.1007/s00508-013-0431-2. [16] SHANKAR K, KUMAR D, GUPTA S, et al. Role of brown adipose tissue in modulating adipose tissue inflammation and insulin resistance in high-fat diet fed mice[J]. Eur J Pharmacol, 2019, 854: 354-364. DOI: 10.1016/j.ejphar.2019.02.044. [17] MA J, WANG Y, DING J, et al. SAHA induces white fat browning and rectifies metabolic dysfunctions via activation of ZFPs[J]. J Endocrinol, 2021, 249(3): 177-193. DOI: 10.1530/JOE-20-0472. [18] PENG WQ, XIAO G, LI BY, et al. l-Theanine activates the browning of white adipose tissue through the AMPK/α-Ketoglutarate/Prdm16 axis and ameliorates diet-induced obesity in mice[J]. Diabetes, 2021, 70(7): 1458-1472. DOI: 10.2337/db20-1210. [19] CHEN CC, KUO CH, LEU YL, et al. Corylin reduces obesity and insulin resistance and promotes adipose tissue browning through SIRT-1 and β3-AR activation[J]. Pharmacol Res, 2021, 164: 105291. DOI: 10.1016/j.phrs.2020.105291. [20] HSU JW, YEH SC, TSAI FY, et al. Fibroblast growth factor 21 secretion enhances glucose uptake in mono(2-ethylhexyl)phthalate-treated adipocytes[J]. Toxicol In Vitro, 2019, 59: 246-254. DOI: 10.1016/j.tiv.2019.04.021. [21] WANG Z, NING T, SONG A, et al. Chronic cold exposure enhances glucose oxidation in brown adipose tissue[J]. EMBO Rep, 2020, 21(11): e50085. DOI: 10.15252/embr.202050085. [22] SEEBACHER F, ZEIGERER A, KORY N, et al. Hepatic lipid droplet homeostasis and fatty liver disease[J]. Semin Cell Dev Biol, 2020, 108: 72-81. DOI: 10.1016/j.semcdb.2020.04.011. [23] GOOSSENS GH. The metabolic phenotype in obesity: Fat mass, body fat distribution, and adipose tissue function[J]. Obes Facts, 2017, 10(3): 207-215. DOI: 10.1159/000471488. [24] REYES-FARIAS M, FOS-DOMENECH J, SERRA D, et al. White adipose tissue dysfunction in obesity and aging[J]. Biochem Pharmacol, 2021, 192: 114723. DOI: 10.1016/j.bcp.2021.114723. [25] CORRÊA LH, HEYN GS, MAGALHAES KG. The impact of the adipose organ plasticity on inflammation and cancer progression[J]. Cells, 2019, 8(7): 662. DOI: 10.3390/cells8070662. [26] PIERANTONELLI I, SVEGLIATI-BARONI G. Nonalcoholic fatty liver disease: Basic pathogenetic mechanisms in the progression from NAFLD to NASH[J]. Transplantation, 2019, 103(1): e1-e13. DOI: 10.1097/TP.0000000000002480. [27] MORIGNY P, BOUCHER J, ARNER P, et al. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics[J]. Nat Rev Endocrinol, 2021, 17(5): 276-295. DOI: 10.1038/s41574-021-00471-8. [28] di CIAULA A, PASSARELLA S, SHANMUGAM H, et al. Nonalcoholic fatty liver disease (NAFLD). Mitochondria as players and targets of therapies?[J]. Int J Mol Sci, 2021, 22(10): 5375. DOI: 10.3390/ijms22105375. [29] STANFORD KI, MIDDELBEEK RJ, TOWNSEND KL, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity[J]. J Clin Invest, 2013, 123(1): 215-223. DOI: 10.1172/JCI62308. [30] LIU X, WANG S, YOU Y, et al. Brown adipose tissue transplantation reverses obesity in Ob/Ob mice[J]. Endocrinology, 2015, 156(7): 2461-2469. DOI: 10.1210/en.2014-1598. [31] CHENG L, ZHANG S, SHANG F, et al. Emodin improves glucose and lipid metabolism disorders in obese mice via activating brown adipose tissue and inducing browning of white adipose tissue[J]. Front Endocrinol (Lausanne), 2021, 12: 618037. DOI: 10.3389/fendo.2021.618037. [32] CHEN Y, ZHAO YF, PENG XG, et al. Effect of irisin on fat and glucose and lipid metabolism in diet-induced obese mice[J]. Natl Med J China, 2021, 101(16): 1165-1170. DOI: 10.3760/cma.j.cn112137-20200902-02534.陈月, 赵宇飞, 彭新桂, 等. 鸢尾素对小鼠脂肪的作用及对饮食诱导肥胖小鼠糖脂代谢的影响[J]. 中华医学杂志, 2021, 101(16): 1165-1170. DOI: 10.3760/cma.j.cn112137-20200902-02534. [33] YAN J, NIE Y, CAO J, et al. The roles and pharmacological effects of FGF21 in preventing aging-associated metabolic diseases[J]. Front Cardiovasc Med, 2021, 8: 655575. DOI: 10.3389/fcvm.2021.655575. [34] MOURE R, CAIRÓ M, MORÓN-ROS S, et al. Levels of β-klotho determine the thermogenic responsiveness of adipose tissues: involvement of the autocrine action of FGF21[J]. Am J Physiol Endocrinol Metab, 2021, 320(4): E822-E834. DOI: 10.1152/ajpendo.00270.2020. [35] FISHER FM, KLEINER S, DOURIS N, et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis[J]. Genes Dev, 2012, 26(3): 271-281. DOI: 10.1101/gad.177857.111. [36] GAICH G, CHIEN JY, FU H, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes[J]. Cell Metab, 2013, 18(3): 333-340. DOI: 10.1016/j.cmet.2013.08.005. [37] WANG Y, MA C, SUN T, et al. Potential roles of bone morphogenetic protein-9 in glucose and lipid homeostasis[J]. J Physiol Biochem, 2020, 76(4): 503-512. DOI: 10.1007/s13105-020-00763-z. [38] CAPERUTO LC, ANHÊ GF, CAMBIAGHI TD, et al. Modulation of bone morphogenetic protein-9 expression and processing by insulin, glucose, and glucocorticoids: possible candidate for hepatic insulin-sensitizing substance[J]. Endocrinology, 2008, 149(12): 6326-6335. DOI: 10.1210/en.2008-0655. [39] HERRERA B, DOOLEY S, BREITKOPF-HEINLEIN K. Potential roles of bone morphogenetic protein (BMP)-9 in human liver diseases[J]. Int J Mol Sci, 2014, 15(4): 5199-5220. DOI: 10.3390/ijms15045199. [40] KUO MM, KIM S, TSENG CY, et al. BMP-9 as a potent brown adipogenic inducer with anti-obesity capacity[J]. Biomaterials, 2014, 35(10): 3172-3179. DOI: 10.1016/j.biomaterials.2013.12.063. [41] UM JH, PARK SY, HUR JH, et al. Bone morphogenic protein 9 is a novel thermogenic hepatokine secreted in response to cold exposure[J]. Metabolism, 2022, 129: 155139. DOI: 10.1016/j.metabol.2022.155139. [42] YANG S, LI S, LI XJ. MANF: A new player in the control of energy homeostasis, and beyond[J]. Front Physiol, 2018, 9: 1725. DOI: 10.3389/fphys.2018.01725. [43] WEI J, WANG C, YANG G, et al. Decreased circulating MANF in women with PCOS is elevated by metformin therapy and is inversely correlated with insulin resistance and hyperandrogenism[J]. Horm Metab Res, 2020, 52(2): 109-116. DOI: 10.1055/a-1082-1080. [44] WU T, LIU Q, LI Y, et al. Feeding-induced hepatokine, Manf, ameliorates diet-induced obesity by promoting adipose browning via p38 MAPK pathway[J]. J Exp Med, 2021, 218(6): e20201203. DOI: 10.1084/jem.20201203. [45] HASHIMOTO O, TSUCHIDA K, USHIRO Y, et al. cDNA cloning and expression of human activin betaE subunit[J]. Mol Cell Endocrinol, 2002, 194(1-2): 117-122. DOI: 10.1016/s0303-7207(02)00157-0. [46] HASHIMOTO O, FUNABA M, SEKIYAMA K, et al. Activin E controls energy homeostasis in both brown and white adipose tissues as a hepatokine[J]. Cell Rep, 2018, 25(5): 1193-1203. DOI: 10.1016/j.celrep.2018.10.008.
本文二维码
计量
- 文章访问数: 478
- HTML全文浏览量: 99
- PDF下载量: 56
- 被引次数: 0