中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非编码RNA对肝细胞癌肿瘤微环境中免疫细胞的作用

杨超然 李思柔 刘源 侯志远 王元 杨季红

引用本文:
Citation:

非编码RNA对肝细胞癌肿瘤微环境中免疫细胞的作用

DOI: 10.3969/j.issn.1001-5256.2023.04.033
基金项目: 

河北省政府资助临床医学优秀人才培养项目 (361007)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:杨超然、李思柔负责课题设计,资料分析,撰写论文;刘源、侯志远、王元参与收集数据,修改论文;杨季红负责拟定写作思路,指导撰写文章并最后定稿。杨超然和李思柔对本文贡献等同,同为第一作者。
详细信息
    通信作者:

    杨季红,doctoryangjh@sina.com(ORCID: 0000-0001-8844-8640)

Role of non-coding RNA on immune cells in tumor microenvironment of hepatocellular carcinoma

Research funding: 

Hebei Provincial Government Funded Clinical Medicine Talent Training Program (361007)

More Information
  • 摘要: 肝细胞癌(HCC)是一种常见的肝脏恶性肿瘤,具有发病率高、进展快、预后差等特点。近年来发现,非编码RNA(ncRNA)在肿瘤微环境(TME)中参与肿瘤免疫的调节,进而影响HCC的生物学行为。本文简述了ncRNA对TME中免疫细胞的调控作用,并介绍了ncRNA在HCC诊断和治疗中的潜在价值,以期为HCC提供潜在的诊断和治疗策略。

     

  • 表  1  异常表达的ncRNA对免疫细胞的调控和功能

    Table  1.   Modulation of immune cells by abnormal expression ncRNA and function of ncRNA

    ncRNA名称 HCC中表达 可检测位置 免疫相关分子 机制 功能
    lncRNA HOMER3-AS1[6] 高表达 HCC细胞 巨噬细胞、CSF-1 HOMER3/Wnt/β-连环蛋白轴 促进HCC进展
    miR-570[12] 低表达 组织和外周血 CD+8 T淋巴细胞、IFNγ +T淋巴细胞 - 抑制HCC增殖
    miR-26b-5[13] 低表达 HCC细胞 CD4+和CD8+ T淋巴细胞(TNFα、IFNγ、IL-6和IL-2) - 增强抗肿瘤免疫反应
    miR-23a[14] 低表达 细胞和组织 Treg p65/miR-23a/CCL22 促进肿瘤生长
    miR-206[16] 高表达 细胞 巨噬细胞M1极化 KLF4/CCL2/CCR2 抑制HCC发展
    miR-148b[17] 低表达 细胞和组织 CSF-1表达和巨噬细胞浸润 - 促进HCC生长和转移
    miR-506[20] 低表达 细胞 NK细胞 - 增强抗肿瘤免疫反应
    miR-561-5p[21] 高表达 细胞和组织 NK细胞 miR-561-5p/CX3CL1/NK细胞 促进肿瘤发生和转移
    lncRNA FENDRR[23] 低表达 细胞和组织 Treg - 抑制肿瘤的免疫逃逸
    lncRNA NEAT1[24] 低表达 外周血单核细胞 CD8+ T淋巴细胞 - 增强HCC细胞溶解
    lncNNT-AS1[25] 高表达 组织 CD4+ T淋巴细胞 - 增强肿瘤免疫逃逸
    lncRNA00662[29] 高表达 细胞 巨噬细胞M2极化 Wnt/β-catenin 促进肿瘤生长和转移
    lncRNA GAS5[34] 低表达 细胞 NK细胞 miR-544/RUNX3 增强抗肿瘤免疫反应
    circRNA hsa_circ_0110102[36] 高表达 组织 巨噬细胞 - 促进HCC进展
    cricRNA Hsa_circ_0074854[38] 高表达 细胞和组织 巨噬细胞M2极化 - 抑制HCC迁移和侵袭
    注:-,文献未提及。
    下载: 导出CSV
  • [1] SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
    [2] DING W, TAN YL, QIAN Y, et al. First-line targ veted therapies of advanced hepatocellular carcinoma: A Bayesian network analysis of randomized controlled trials[J]. PLoS One, 2020, 15(3): e0229492. DOI: 10.1371/journal.pone.0229492.
    [3] ANASTASIADOU E, JACOB LS, SLACK FJ. Non-coding RNA networks in cancer[J]. Nat Rev Cancer, 2018, 18(1): 5-18. DOI: 10.1038/nrc.2017.99.
    [4] AKBARI DILMAGHNAI N, SHOOREI H, SHARIFI G, et al. Non-coding RNAs modulate function of extracellular matrix proteins[J]. Biomed Pharmacother, 2021, 136: 111240. DOI: 10.1016/j.biopha.2021.111240.
    [5] SHI TT, MORISHITA A, KOBARA H, et al. The role of long non-coding RNA and microRNA networks in hepatocellular carcinoma and its tumor microenvironment[J]. Int J Mol Sci, 2021, 22(19): 10630. DOI: 10.3390/ijms221910630.
    [6] PU J, LI WC, WANG AM, et al. Long non-coding RNA HOMER3-AS1 drives hepatocellular carcinoma progression via modulating the behaviors of both tumor cells and macrophages[J]. Cell Death Dis, 2021, 12(12): 1103. DOI: 10.1038/s41419-021-04309-z.
    [7] GIRALDO NA, SANCHEZ-SALAS R, PESKE JD, et al. The clinical role of the TME in solid cancer[J]. Br J Cancer, 2019, 120(1): 45-53. DOI: 10.1038/s41416-018-0327-z.
    [8] PASCUT D, PRATAMA MY, VO NVT, et al. The crosstalk between tumor cells and the microenvironment in hepatocellular carcinoma: The role of exosomal microRNAs and their clinical implications[J]. Cancers, 2020, 12(4): 823. DOI: 10.3390/cancers12040823.
    [9] JIA ZM, JIA JL, YAO LH, et al. Crosstalk of exosomal non-coding RNAs in the tumor microenvironment: Novel frontiers[J]. Front Immunol, 2022, 13: 900155. DOI: 10.3389/fimmu.2022.900155.
    [10] XIA HM, HUANG ZY, LIU SQ, et al. Exosomal non-coding RNAs: Regulatory and therapeutic target of hepatocellular carcinoma[J]. Front Oncol, 2021, 11: 653846. DOI: 10.3389/fonc.2021.653846.
    [11] DIENER C, HART M, KEHL T, et al. Quantitative and time-resolved miRNA pattern of early human T cell activation[J]. Nucleic Acids Res, 2020, 48(18): 10164-10183. DOI: 10.1093/nar/gkaa788.
    [12] LIN YX, LIU S, SU L, et al. miR-570 inhibits proliferation, angiogenesis, and immune escape of hepatocellular carcinoma[J]. Cancer Biother Radiopharm, 2018, 33(6): 252-257. DOI: 10.1089/cbr.2017.2389.
    [13] HAN W, LI N, LIU J, et al. microRNA-26b-5p enhances T cell responses by targeting PIM-2 in hepatocellular carcinoma[J]. Cell Signal, 2019, 59: 182-190. DOI: 10.1016/j.cellsig.2018.11.011.
    [14] LI ZQ, WANG HY, ZENG QL, et al. p65/miR-23a/CCL22 axis regulated regulatory T cells recruitment in hepatitis B virus positive hepatocellular carcinoma[J]. Cancer Med, 2020, 9(2): 711-723. DOI: 10.1002/cam4.2611.
    [15] WANG C, MA C, GONG LH, et al. Macrophage polarization and its role in liver disease[J]. Front Immunol, 2021, 12: 803037. DOI: 10.3389/fimmu.2021.803037.
    [16] LIU NN, WANG XM, STEER CJ, et al. microRNA-206 promotes the recruitment of CD8+ T cells by driving M1 polarisation of Kupffer cells[J]. Gut, 2022, 71(8): 1642-1655. DOI: 10.1136/gutjnl-2021-324170.
    [17] KE M, ZHANG Z, CONG L, et al. microRNA-148b-colony-stimulating factor-1 signaling-induced tumor-associated macrophage infiltration promotes hepatocellular carcinoma metastasis[J]. Biomed Pharmacother, 2019, 120: 109523. DOI: 10.1016/j.biopha.2019.109523.
    [18] PIÑEIRO FERNÁNDEZ J, LUDDY KA, HARMON C, et al. Hepatic tumor microenvironments and effects on NK cell phenotype and function[J]. Int J Mol Sci, 2019, 20(17): 4131. DOI: 10.3390/ijms20174131.
    [19] ZHANG QF, YIN WW, XIA Y, et al. Liver-infiltrating CD11b-CD27- NK subsets account for NK-cell dysfunction in patients with hepatocellular carcinoma and are associated with tumor progression[J]. Cell Mol Immunol, 2017, 14(10): 819-829. DOI: 10.1038/cmi.2016.28.
    [20] SU ZX, YE XP, SHANG LM. miR-506 promotes natural killer cell cytotoxicity against human hepatocellular carcinoma cells by targeting STAT3[J]. Yonsei Med J, 2019, 60(1): 22-29. DOI: 10.3349/ymj.2019.60.1.22.
    [21] CHEN EB, ZHOU ZJ, XIAO K, et al. The miR-561-5p/CX3CL1 signaling axis regulates pulmonary metastasis in hepatocellular carcinoma involving CX3CR1+ natural killer cells infiltration[J]. Theranostics, 2019, 9(16): 4779-4794. DOI: 10.7150/thno.32543.
    [22] ZOU H, SHAO CX, ZHOU QY, et al. The role of lncRNAs in hepatocellular carcinoma: Opportunities as novel targets for pharmacological intervention[J]. Expert Rev Gastroenterol Hepatol, 2016, 10(3): 331-340. DOI: 10.1586/17474124.2016.1116382.
    [23] YU Z, ZHAO H, FENG X, et al. Long non-coding RNA FENDRR acts as a miR-423-5p sponge to suppress the treg-mediated immune escape of hepatocellular carcinoma cells[J]. Mol Ther Nucleic Acids, 2019, 17: 516-529. DOI: 10.1016/j.omtn.2019.05.027.
    [24] YAN K, FU Y, ZHU N, et al. Repression of lncRNA NEAT1 enhances the antitumor activity of CD8+T cells against hepatocellular carcinoma via regulating miR-155/Tim-3[J]. Int J Biochem Cell Biol, 2019, 110: 1-8. DOI: 10.1016/j.biocel.2019.01.019.
    [25] WANG YK, YANG L, DONG XC, et al. Overexpression of NNT-AS1 activates TGF- β signaling to decrease tumor CD4 lymphocyte infiltration in hepatocellular carcinoma[J]. Biomed Res Int, 2020, 2020: 8216541. DOI: 10.1155/2020/8216541.
    [26] WAN S, ZHAO E, KRYCZEK I, et al. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells[J]. Gastroenterology, 2014, 147(6): 1393-1404. DOI: 10.1053/j.gastro.2014.08.039.
    [27] BAIG MS, ROY A, RAJPOOT S, et al. Tumor-derived exosomes in the regulation of macrophage polarization[J]. Inflamm Res, 2020, 69(5): 435-451. DOI: 10.1007/s00011-020-01318-0.
    [28] LUO HL, LUO T, LIU JJ, et al. Macrophage polarization-associated lnc-Ma301 interacts with caprin-1 to inhibit hepatocellular carcinoma metastasis through the Akt/Erk1 pathway[J]. Cancer Cell Int, 2021, 21(1): 422. DOI: 10.1186/s12935-021-02133-1.
    [29] TIAN XH, WU YY, YANG YT, et al. Long noncoding RNA LINC00662 promotes M2 macrophage polarization and hepatocellular carcinoma progression via activating Wnt/β-catenin signaling[J]. Mol Oncol, 2020, 14(2): 462-483. DOI: 10.1002/1878-0261.12606.
    [30] YE YB, XU Y, LAI Y, et al. Long non-coding RNA cox-2 prevents immune evasion and metastasis of hepatocellular carcinoma by altering M1/M2 macrophage polarization[J]. J Cell Biochem, 2018, 119(3): 2951-2963. DOI: 10.1002/jcb.26509.
    [31] SASAKI R, KANDA T, YOKOSUKA O, et al. Exosomes and hepatocellular carcinoma: From bench to bedside[J]. Int J Mol Sci, 2019, 20(6): 1406. DOI: 10.3390/ijms20061406.
    [32] QI F, DU XJ, ZHAO ZY, et al. Tumor mutation burden-associated LINC00638/miR-4732-3p/ULBP1 axis promotes immune escape via PD-L1 in hepatocellular carcinoma[J]. Front Oncol, 2021, 11: 729340. DOI: 10.3389/fonc.2021.729340.
    [33] ZHANG L, HU SS, CHEN JS, et al. Comprehensive analysis of the MIR4435-2HG/miR-1-3p/MMP9/miR-29-3p/DUXAP8 ceRNA network axis in hepatocellular carcinoma[J]. Discov Oncol, 2021, 12(1): 38. DOI: 10.1007/s12672-021-00436-3.
    [34] FANG PP, XIANG LX, CHEN WL, et al. LncRNA GAS5 enhanced the killing effect of NK cell on liver cancer through regulating miR-544/RUNX3[J]. Innate Immun, 2019, 25(2): 99-109. DOI: 10.1177/1753425919827632.
    [35] CHEN W, QUAN Y, FAN S, et al. Exosome-transmitted circular RNA hsa_circ_0051443 suppresses hepatocellular carcinoma progression[J]. Cancer Lett, 2020, 475: 119-128. DOI: 10.1016/j.canlet.2020.01.022.
    [36] WANG XX, SHENG W, XU T, et al. CircRNA hsa_circ_0110102 inhibited macrophage activation and hepatocellular carcinoma progression via miR-580-5p/PPARα/CCL2 pathway[J]. Aging, 2021, 13(8): 11969-11987. DOI: 10.18632/aging.202900.
    [37] ZHANG PF, GAO C, HUANG XY, et al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma[J]. Mol Cancer, 2020, 19(1): 110. DOI: 10.1186/s12943-020-01222-5.
    [38] WANG Y, GAO RF, LI JP, et al. Downregulation of hsa_circ_0074854 suppresses the migration and invasion in hepatocellular carcinoma via interacting with HuR and via suppressing exosomes-mediated macrophage M2 polarization[J]. Int J Nanomedicine, 2021, 16: 2803-2818. DOI: 10.2147/IJN.S284560.
    [39] TANG X, REN H, GUO M, et al. Review on circular RNAs and new insights into their roles in cancer[J]. Comput Struct Biotechnol J, 2021, 19: 910-928. DOI: 10.1016/j.csbj.2021.01.018.
    [40] SHI Y, LIU JB, DENG J, et al. The role of ceRNA-mediated diagnosis and therapy in hepatocellular carcinoma[J]. Hereditas, 2021, 158(1): 44. DOI: 10.1186/s41065-021-00208-7.
    [41] CHEN WL, XU XM. New progress in the study of markers for the early diagnosis of liver cancer[J]. China Med Herald, 2023, 20(1): 40-44. DOI: 10.20047/j.issn1673-7210.2023.01.08.

    陈文亮, 徐细明. 肝癌早期诊断标志物的研究新进展[J]. 中国医药导报, 2023, 20(1): 40-44. DOI: 10.20047/j.issn1673-7210.2023.01.08.
    [42] HUANG FX, LI HY, LI ZK, et al. Regulation of thymosinα1 resistance to hepatocellular carcinoma by long chain non-coding RNA LINC0110[J]. Chin J Immunol, 2022, 38(10): 1207-1211. DOI: 10.3969/j.issn.1000-484X.2022.10.010.5

    黄凤霞, 李海燕, 李正堃, 等. 长链非编码RNA LINC01105调控肝癌对胸腺素α1耐药[J]. 中国免疫学杂志, 2022, 38(10): 1207-1211. DOI: 10.3969/j.issn.1000-484X.2022.10.010.5
    [43] SUN QY, LI J, JIN BX, et al. Evaluation of miR-331-3p and miR-23b-3p as serum biomarkers for hepatitis C virus-related hepatocellular carcinoma at early stage[J]. Clin Res Hepatol Gastroenterol, 2020, 44(1): 21-28. DOI: 10.1016/j.clinre.2019.03.011.
    [44] HUANG WJ, TIAN XP, BI SX, et al. The β-catenin/TCF-4-LINC01278-miR-1258-Smad2/3 axis promotes hepatocellular carcinoma metastasis[J]. Oncogene, 2020, 39(23): 4538-4550. DOI: 10.1038/s41388-020-1307-3.
  • 加载中
表(1)
计量
  • 文章访问数:  416
  • HTML全文浏览量:  77
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-28
  • 录用日期:  2022-09-09
  • 出版日期:  2023-04-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回