肝癌微环境中肿瘤相关巨噬细胞的研究进展
DOI: 10.3969/j.issn.1001-5256.2023.05.033
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:汪鹏、仇建南负责收集数据,资料分析,撰写论文;王忠夏负责修改文章;江春平、吴俊华提供写作思路,指导撰写文章,修改文章并最后定稿。
Research advances in tumor-associated macrophages in hepatocellular carcinoma microenvironment
-
摘要: 由于肝细胞癌早期临床症状不明显,患者确诊时大多已发展到晚期阶段。错失最佳手术机会的肝癌患者治疗手段有限,因此寻找新的治疗靶点变得十分重要。肿瘤相关巨噬细胞(TAM),是存在于肿瘤免疫微环境中一群巨噬细胞,影响着肝癌细胞的各种恶性行为和肿瘤内的免疫逃逸状态。介绍了TAM的起源和分类,归纳了TAM在肝癌血管增生、侵袭转移、干细胞特性的形成和维持、以及抗肿瘤免疫中的作用和机制,简述了当前针对TAM的治疗靶点的研究进展等,认为靶向TAM可能是一个有前景的临床治疗方向。Abstract: Since there is a lack of obvious clinical symptoms in the early stage of hepatocellular carcinoma (HCC), most patients have progressed to the advanced stage at the time of confirmed diagnosis. There are limited treatment options for HCC patients who miss the opportunity for surgery, so it is of great importance to find new therapeutic targets. Tumor-associated macrophages (TAMs) are a group of macrophages existing in the tumor immune microenvironment and affect the malignant behaviors of HCC cells and the state of immune escape within the tumor. This article introduces the origin and classification of TAM, summarizes the role and mechanism of TAMs in vascular proliferation, invasion and metastasis, formation and maintenance of stemness, and anti-tumor immunity in HCC, and briefly describes the current research advances in therapeutic targets for TAM, and it is pointed out that targeting TAM may be a promising direction for clinical treatment.
-
[1] LLOVET JM, KELLEY RK, VILLANUEVA A, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2021, 7(1): 6. DOI: 10.1038/s41572-020-00240-3. [2] FINN RS, RYOO BY, MERLE P, et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: A randomized, double-blind, phase Ⅲ trial[J]. J Clin Oncol, 2020, 38(3): 193-202. DOI: 10.1200/JCO.19.01307. [3] D'ALESSIO A, CAMMAROTA A, PRETE MG, et al. The evolving treatment paradigm of advanced hepatocellular carcinoma: putting all the pieces back together[J]. Curr Opin Oncol, 2021, 33(4): 386-394. DOI: 10.1097/CCO.0000000000000744. [4] PFISTER D, NÚÑEZ NG, PINYOL R, et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC[J]. Nature, 2021, 592(7854): 450-456. DOI: 10.1038/s41586-021-03362-0. [5] RITZ T, KRENKEL O, TACKE F. Dynamic plasticity of macrophage functions in diseased liver[J]. Cell Immunol, 2018, 330: 175-182. DOI: 10.1016/j.cellimm.2017.12.007. [6] SCHUPPAN D, SURABATTULA R, WANG XY. Determinants of fibrosis progression and regression in NASH[J]. J Hepatol, 2018, 68(2): 238-250. DOI: 10.1016/j.jhep.2017.11.012. [7] DEGROOTE H, van DIERENDONCK A, GEERTS A, et al. Preclinical and clinical therapeutic strategies affecting tumor-associated macrophages in hepatocellular carcinoma[J]. J Immunol Res, 2018, 2018: 7819520. DOI: 10.1155/2018/7819520. [8] CHEN DP, NING WR, JIANG ZZ, et al. Glycolytic activation of peritumoral monocytes fosters immune privilege via the PFKFB3-PD-L1 axis in human hepatocellular carcinoma[J]. J Hepatol, 2019, 71(2): 333-343. DOI: 10.1016/j.jhep.2019.04.007. [9] COMI M, AVANCINI D, SANTONI DE SIO F, et al. Coexpression of CD163 and CD141 identifies human circulating IL-10-producing dendritic cells (DC-10)[J]. Cell Mol Immunol, 2020, 17(1): 95-107. DOI: 10.1038/s41423-019-0218-0. [10] WAN S, KUO N, KRYCZEK I, et al. Myeloid cells in hepatocellular carcinoma[J]. Hepatology, 2015, 62(4): 1304-1312. DOI: 10.1002/hep.27867. [11] FUJITA N, NISHIE A, AISHIMA S, et al. Role of tumor-associated macrophages in the angiogenesis of well-differentiated hepatocellular carcinoma: pathological-radiological correlation[J]. Oncol Rep, 2014, 31(6): 2499-2505. DOI: 10.3892/or.2014.3138. [12] DONG S, GUO X, HAN F, et al. Emerging role of natural products in cancer immunotherapy[J]. Acta Pharm Sin B, 2022, 12(3): 1163-1185. DOI: 10.1016/j.apsb.2021.08.020. [13] LARIONOVA I, KAZAKOVA E, GERASHCHENKO T, et al. New angiogenic regulators produced by TAMs: Perspective for targeting tumor angiogenesis[J]. Cancers (Basel), 2021, 13(13): 3253. DOI: 10.3390/cancers13133253. [14] NAJAFI M, FARHOOD B, MORTEZAEE K. Extracellular matrix (ECM) stiffness and degradation as cancer drivers[J]. J Cell Biochem, 2019, 120(3): 2782-2790. DOI: 10.1002/jcb.27681. [15] BALKWILL FR, MANTOVANI A. Cancer-related inflammation: common themes and therapeutic opportunities[J]. Semin Cancer Biol, 2012, 22(1): 33-40. DOI: 10.1016/j.semcancer.2011.12.005. [16] JAKAB M, ROSTALSKI T, LEE KH, et al. Tie2 receptor in tumor-infiltrating macrophages is dispensable for tumor angiogenesis and tumor relapse after chemotherapy[J]. Cancer Res, 2022, 82(7): 1353-1364. DOI: 10.1158/0008-5472.CAN-21-3181. [17] BARTNECK M, SCHRAMMEN PL, MÖCKEL D, et al. The CCR2+ macrophage subset promotes pathogenic angiogenesis for tumor vascularization in fibrotic Livers[J]. Cell Mol Gastroenterol Hepatol, 2019, 7(2): 371-390. DOI: 10.1016/j.jcmgh.2018.10.007. [18] THOMANN S, WEILER S, WEI T, et al. YAP-induced Ccl2 expression is associated with a switch in hepatic macrophage identity and vascular remodelling in liver cancer[J]. Liver Int, 2021, 41(12): 3011-3023. DOI: 10.1111/liv.15048. [19] ZHANG J, CHANG L, ZHANG X, et al. Meta-analysis of the prognostic and clinical value of tumor-associated macrophages in hepatocellular carcinoma[J]. J Invest Surg, 2021, 34(3): 297-306. DOI: 10.1080/08941939.2019.1631411. [20] ZHU XD, ZHANG JB, ZHUANG PY, et al. High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma[J]. J Clin Oncol, 2008, 26(16): 2707-2716. DOI: 10.1200/jco.2007.15.6521. [21] LU Y, YANG A, QUAN C, et al. A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma[J]. Nat Commun, 2022, 13(1): 4594. DOI: 10.1038/s41467-022-32283-3. [22] YAN L, XU F, DAI CL. Relationship between epithelial-to-mesenchymal transition and the inflammatory microenvironment of hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2018, 37(1): 203. DOI: 10.1186/s13046-018-0887-z. [23] YEUNG OW, LO CM, LING CC, et al. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma[J]. J Hepatol, 2015, 62(3): 607-616. DOI: 10.1016/j.jhep.2014.10.029. [24] ZHANG J, ZHANG Q, LOU Y, et al. Hypoxia-inducible factor-1α/interleukin-1β signaling enhances hepatoma epithelial-mesenchymal transition through macrophages in a hypoxic-inflammatory microenvironment[J]. Hepatology, 2018, 67(5): 1872-1889. DOI: 10.1002/hep.29681. [25] YANG HD, KIM HS, KIM SY, et al. HDAC6 suppresses Let-7i-5p to elicit TSP1/CD47-mediated anti-tumorigenesis and phagocytosis of hepatocellular carcinoma[J]. Hepatology, 2019, 70(4): 1262-1279. DOI: 10.1002/hep.30657. [26] FAN QM, JING YY, YU GF, et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Cancer Lett, 2014, 352(2): 160-168. DOI: 10.1016/j.canlet.2014.05.008. [27] CHEN Y, WEN H, ZHOU C, et al. TNF-α derived from M2 tumor-associated macrophages promotes epithelial-mesenchymal transition and cancer stemness through the Wnt/β-catenin pathway in SMMC-7721 hepatocellular carcinoma cells[J]. Exp Cell Res, 2019, 378(1): 41-50. DOI: 10.1016/j.yexcr.2019.03.005. [28] WANG Y, WANG B, XIAO S, et al. miR-125a/b inhibits tumor-associated macrophages mediated in cancer stem cells of hepatocellular carcinoma by targeting CD90[J]. J Cell Biochem, 2019, 120(3): 3046-3055. DOI: 10.1002/jcb.27436. [29] WEI R, ZHU WW, YU GY, et al. S100 calcium-binding protein A9 from tumor-associated macrophage enhances cancer stem cell-like properties of hepatocellular carcinoma[J]. Int J Cancer, 2021, 148(5): 1233-1244. DOI: 10.1002/ijc.33371. [30] WAN S, ZHAO E, KRYCZEK I, et al. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells[J]. Gastroenterology, 2014, 147(6): 1393-1404. DOI: 10.1053/j.gastro.2014.08.039. [31] FU Y, LIU S, ZENG S, et al. From bench to bed: the tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2019, 38(1): 396. DOI: 10.1186/s13046-019-1396-4. [32] YANG L, ZHANG Y. Tumor-associated macrophages: from basic research to clinical application[J]. J Hematol Oncol, 2017, 10(1): 58. DOI: 10.1186/s13045-017-0430-2. [33] MA H, KANG Z, FOO TK, et al. Disrupted BRCA1-PALB2 interaction induces tumor immunosuppression and T-lymphocyte infiltration in HCC through cGAS-STING pathway[J]. Hepatology, 2023, 77(1): 33-47. DOI: 10.1002/hep.32335. [34] LIAO J, ZENG DN, LI JZ, et al. Type I IFNs repolarized a CD169+ macrophage population with anti-tumor potentials in hepatocellular carcinoma[J]. Mol Ther, 2022, 30(2): 632-643. DOI: 10.1016/j.ymthe.2021.09.021. [35] CHEW V, TOW C, TEO M, et al. Inflammatory tumour microenvironment is associated with superior survival in hepatocellular carcinoma patients[J]. J Hepatol, 2010, 52(3): 370-379. DOI: 10.1016/j.jhep.2009.07.013. [36] WANG H, KAUR G, SANKIN AI, et al. Immune checkpoint blockade and CAR-T cell therapy in hematologic malignancies[J]. J Hematol Oncol, 2019, 12(1): 59. DOI: 10.1186/s13045-019-0746-1. [37] LI H, WU K, TAO K, et al. Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma[J]. Hepatology, 2012, 56(4): 1342-1351. DOI: 10.1002/hep.25777. [38] LOGTENBERG M, SCHEEREN FA, SCHUMACHER TN. The CD47-SIRPα immune checkpoint[J]. Immunity, 2020, 52(5): 742-752. DOI: 10.1016/j.immuni.2020.04.011. [39] MOLINIER-FRENKEL V, CASTELLANO F. Immunosuppressive enzymes in the tumor microenvironment[J]. FEBS Lett, 2017, 591(19): 3135-3157. DOI: 10.1002/1873-3468.12784. [40] ZHANG W, ZHU XD, SUN HC, et al. Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects[J]. Clin Cancer Res, 2010, 16(13): 3420-3430. DOI: 10.1158/1078-0432.CCR-09-2904. [41] SALMAN S, MEYERS DJ, WICKS EE, et al. HIF inhibitor 32-134D eradicates murine hepatocellular carcinoma in combination with anti-PD1 therapy[J]. J Clin Invest, 2022, 132(9). DOI: 10.1172/JCI156774. [42] LI G, LIU D, KIMCHI ET, et al. Nanoliposome C6-ceramide increases the anti-tumor immune response and slows growth of liver tumors in mice[J]. Gastroenterology, 2018, 154(4): 1024-1036. e9. DOI: 10.1053/j.gastro.2017.10.050. [43] AVILA MA, BERASAIN C. Targeting CCL2/CCR2 in tumor-infiltrating macrophages: A tool emerging out of the box against hepatocellular carcinoma[J]. Cell Mol Gastroenterol Hepatol, 2019, 7(2): 293-294. DOI: 10.1016/j.jcmgh.2018.11.002. [44] YAO W, BA Q, LI X, et al. A natural CCR2 antagonist relieves tumor-associated macrophage-mediated immunosuppression to produce a therapeutic effect for liver cancer[J]. EBioMedicine, 2017, 22: 58-67. DOI: 10.1016/j.ebiom.2017.07.014. [45] ZHU Y, YANG J, XU D, et al. Disruption of tumour-associated macrophage trafficking by the osteopontin-induced colony-stimulating factor-1 signalling sensitises hepatocellular carcinoma to anti-PD-L1 blockade[J]. Gut, 2019, 68(9): 1653-1666. DOI: 10.1136/gutjnl-2019-318419. [46] WEI CY, ZHU MX, ZHANG PF, et al. PKCα/ZFP64/CSF1 axis resets the tumor microenvironment and fuels anti-PD1 resistance in hepatocellular carcinoma[J]. J Hepatol, 2022, 77(1): 163-176. DOI: 10.1016/j.jhep.2022.02.019. [47] HUANG Y, GE W, ZHOU J, et al. The role of tumor associated macrophages in hepatocellular carcinoma[J]. J Cancer, 2021, 12(5): 1284-1294. DOI: 10.7150/jca.51346. [48] ARVANITAKIS K, KOLETSA T, MITROULIS I, et al. Tumor-associated macrophages in hepatocellular carcinoma pathogenesis, prognosis and therapy[J]. Cancers (Basel), 2022, 14(1): 226. DOI: 10.3390/cancers14010226. [49] YU Z, LI Y, LI Y, et al. Bufalin stimulates antitumor immune response by driving tumor-infiltrating macrophage toward M1 phenotype in hepatocellular carcinoma[J]. J Immunother Cancer, 2022, 10(5): e004297. DOI: 10.1136/jitc-2021-004297. [50] XIAO Z, CHUNG H, BANAN B, et al. Antibody mediated therapy targeting CD47 inhibits tumor progression of hepatocellular carcinoma[J]. Cancer Lett, 2015, 360(2): 302-309. DOI: 10.1016/j.canlet.2015.02.036.
本文二维码
计量
- 文章访问数: 505
- HTML全文浏览量: 122
- PDF下载量: 71
- 被引次数: 0