中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肝切除术前肝储备功能的评估方法

裴俊鹏 丁佑铭

引用本文:
Citation:

肝切除术前肝储备功能的评估方法

DOI: 10.3969/j.issn.1001-5256.2023.05.034
基金项目: 

中央引导地方科技发展专项 (2019A4005)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:裴俊鹏负责撰写论文,丁佑铭指导撰写文章并最后定稿。
详细信息
    通信作者:

    丁佑铭,dingym62@163.com (ORCID: 0000-0003-4395-4210)

Methods for evaluating liver reserve function before hepatectomy

Research funding: 

The Central Government Guides Local Science and Technology Development Projects (2019A4005)

More Information
    Corresponding author: DING Youming, dingym62@163.com (ORCID: 0000-0003-4395-4210)
  • 摘要: 目前肝切除术已成为绝大多数肝胆良恶性病变的首选治疗方式。肝功能衰竭是肝切除术后的常见并发症,对于恶性疾病,如何最大程度清除病灶并降低术后肝功能衰竭发生率,是目前肝切除术面对的重点问题。术前对肝脏储备功能正确、充分的评估,可以为肝脏疾病进展、治疗效果及预后提供判断依据。目前,对肝脏储备功能及手术可行性的评估方法繁多,各有其优缺点,尚无单一全面性的评估方法,对目前常用评估方法的特点及进展进行综述。

     

  • 表  1  常见超声技术的作用及干扰因素

    Table  1.   The role and interference factors of common ultrasound techniques

    超声技术 缩写 作用 干扰因素
    静态弹性成像的实时弹性成像[8-9] RTE 显示病灶的大小、数量以及对周边组织的侵犯情况 肥胖、腹腔大血管、腹腔气体、腹腔积液[10]
    动态弹性成像的瞬时弹性成像[11-12] TE 量化肝脏硬度,无创、简便易操作、快速安全、可重复、经济实惠存在明显肝细胞炎症及胆汁淤积
    声辐射力脉冲成像[13] ARFI 量化肝脏硬度及病变组织硬度 多发性肝脏占位性、大量腹水、肝脏萎缩
    剪切波弹性成像 2D-SWE 量化肝脏硬度,由TE衍生而来,比TE具有更强的识别肝纤维化和肝硬化的能力[14] 存在明显肝细胞炎症及胆汁淤积
    超声造影技术[15] CEUS 实时、动态连续的显示肝脏血流灌注情况 合并严重脂肪肝及局灶性增生结节
    组织结构声学定量技术 ASQ 无创、定量,操作便捷,可重复性高,预测肝癌价值高[16] 肝硬化程度重,无正常肝组织作为参照
    下载: 导出CSV

    表  2  MCP评分系统[31]

    Table  2.   MCP Scoring system

    变量 1分 2分 3分
    总胆红素(μmol/mL) <34 34~51 >51
    Alb(g/L) >35 28~35 <28
    PT延长(s) <4 4~6 >6
    PA(mg/L)
      男 >190 130~190 <130
      女 >170 120~170 <120
    注:得分4分为MCP-1级,得分5分为MCP-2级,得分≥6分为MCP-3级。
    下载: 导出CSV
  • [1] General Office of National Health Commission. Standard for diagnosis and treatment of primary liver cancer (2022 edition)[J]. J Clin Hepatol, 2022, 38(2): 288-303. DOI: 10.3969/j.issn.1001-5256.2022.02.009.

    国家卫生健康委办公厅. 原发性肝癌诊疗指南(2022年版)[J]. 临床肝胆病杂志, 2022, 38(2): 288-303. DOI: 10.3969/j.issn.1001-5256.2022.02.009.
    [2] HUANG L, LI J, YAN JJ, et al. Prealbumin is predictive for postoperative liver insufficiency in patients undergoing liver resection[J]. World J Gastroenterol, 2012, 18(47): 7021-7025. DOI: 10.3748/wjg.v18.i47.7021.
    [3] QIAO W, LENG F, LIU T, et al. Prognostic value of prealbumin in liver cancer: A systematic review and meta-analysis[J]. Nutr Cancer, 2020, 72(6): 909-916. DOI: 10.1080/01635581.2019.1661501.
    [4] FENG L, ZHANG XY, YANG YT, et al. The clinical value of hepatic fibrosis indicators tests in hepatic diseases[J]. Labeled Immunoassays and Clinical Medicine, 2019, 26(8): 1349-1353. DOI: 10.11748/bjmy.issn.1006-1703.2019.08.024.

    封莉, 张小英, 杨玉婷, 等. 肝纤四项联合其他肝功能指标检测对肝脏疾病的临床价值分析[J]. 标记免疫分析与临床, 2019, 26(8): 1349-1353. DOI: 10.11748/bjmy.issn.1006-1703.2019.08.024.
    [5] WANG X, ZHANG X, LI Z, et al. A hyaluronic acid-derived imaging probe for enhanced imaging and accurate staging of liver fibrosis[J]. Carbohydr Polym, 2022, 295: 119870. DOI: 10.1016/j.carbpol.2022.119870.
    [6] ISHⅡ M, ITANO O, SHINODA M, et al. Pre-hepatectomy type IV collagen 7S predicts post-hepatectomy liver failure and recovery[J]. World J Gastroenterol, 2020, 26(7): 725-739. DOI: 10.3748/wjg.v26.i7.725.
    [7] MIZUGUCHI T, KAWAMOTO M, MEGURO M, et al. Serum antithrombin Ⅲ level is well correlated with multiple indicators for assessment of liver function and diagnostic accuracy for predicting postoperative liver failure in hepatocellular carcinoma patients[J]. Hepatogastroenterology, 2012, 59(114): 551-557. DOI: 10.5754/hge10052.
    [8] MASUZAKI R, TATEISHI R, YOSHIDA H, et al. Comparison of liver biopsy and transient elastography based on clinical relevance[J]. Can J Gastroenterol, 2008, 22(9): 753-757. DOI: 10.1155/2008/306726.
    [9] LEE PC, CHIOU YY, CHIU NC, et al. Liver stiffness measured by acoustic radiation force impulse elastography predicted prognoses of hepatocellular carcinoma after radiofrequency ablation[J]. Sci Rep, 2020, 10(1): 2006. DOI: 10.1038/s41598-020-58988-3.
    [10] LIU L, LI F. Application of real-time tissue elastography in biopsy and interventional therapy of liver tumor[J]. J Clin Ultrasound Med, 2015, 17(3): 191-192. DOI: 10.16245/j.cnki.issn1008-6978.2015.03.021.

    刘利, 李芳. 实时组织弹性成像技术在肝脏肿瘤穿刺活检与介入治疗中的应用[J]. 临床超声医学杂志, 2015, 17(3): 191-192. DOI: 10.16245/j.cnki.issn1008-6978.2015.03.021.
    [11] STEFANESCU H, RADU C, PROCOPET B, et al. Non-invasive ménage à trois for the prediction of high-risk varices: stepwise algorithm using lok score, liver and spleen stiffness[J]. Liver Int, 2015, 35(2): 317-325. DOI: 10.1111/liv.12687.
    [12] XU FM, SHENG QS. Research advances in serum markers and transient elastography in the evaluation of liver fibrosis[J]. J Clin Hepatol, 2018, 34(3): 618-622. DOI: 10.3969/j.issn.1001-5256.2018.03.040.

    许峰铭, 盛庆寿. 血清标志物与瞬时弹性成像技术评估肝纤维化的研究进展[J]. 临床肝胆病杂志, 2018, 34(3): 618-622. DOI: 10.3969/j.issn.1001-5256.2018.03.040.
    [13] XU X, WANG XR, HE XH, et al. The assessment of hepatic fibrosis and pre-operative functional reserve in patients with space-occupying lesions using acoustic radiation force impulse imaging[J]. Radiol Pract, 2016, 31(9): 881-885. DOI: 10.13609/j.cnki.1000-0313.2016.09.020.

    徐霞, 王雪瑞, 贺秀红, 等. 应用ARFI技术评估肝脏纤维化和肝占位患者术前肝储备功能[J]. 放射学实践, 2016, 31(9): 881-885. DOI: 10.13609/j.cnki.1000-0313.2016.09.020.
    [14] LIU J, LI Y, YANG X, et al. Comparison of two-dimensional shear wave elastography with nine serum fibrosis indices to assess liver fibrosis in patients with chronic hepatitis B: a prospective cohort study[J]. Ultraschall Med, 2019, 40(2): 237-246. DOI: 10.1055/a-0796-6584.
    [15] ZHOU CH, CHEN T, LI R. Image features and diagnostic value of contrast-enhanced ultrasonography in hepatic space-occupying lesions[J]. J North Sichuan Med Coll, 2022, 37(7): 935-938. DOI: 10.3969/j.issn.1005-3697.2022.07.027.

    周长航, 陈涛, 李忍. 超声造影中肝脏占位性病变中的图像特征及诊断价值[J]. 川北医学院学报, 2022, 37(7): 935-938. DOI: 10.3969/j.issn.1005-3697.2022.07.027.
    [16] DUAN LH. Evaluation and analysis of hepatocellular carcinoma by acoustic quantitative analysis of ultrasonic tissue structure[J]. J Prac Med Imaging, 2021, 22(6): 631-633. DOI: 10.16106/j.cnki.cn14-1281/r.2021.06.032.

    段利华. 超声组织结构声学定量分析技术对肝癌的评估分析[J]. 实用医学影像杂志, 2021, 22(6): 631-633. DOI: 10.16106/j.cnki.cn14-1281/r.2021.06.032.
    [17] GAN CX, WANG X, PAN YZ. Application of three-dimensional reconstruction in conversion resection of advanced primary liver cancer[J/OL]. Chin J Hepat Surg(Electronic Edition), 2022, 11(5): 503-507. DOI: 10.3877/cma.j.issn.2095-3232.2022.05.015.

    干宸鑫, 王兴, 潘耀振. 三维重建在中晚期肝癌转化切除中的应用[J/CD]. 中华肝脏外科手术学电子杂志, 2022, 11(5): 503-507. DOI: 10.3877/cma.j.issn.2095-3232.2022.05.015.
    [18] WANG TY, ZHU YF, SUN M, et al. Application of three-dimensional reconstruction combined with indocyanine green intraoperative navigation in diagnosis and treatment of liver cancer[J]. J Jilin Univ(Med Edit), 2021, 47(4): 1014-1021. DOI: 10.13481/j.1671-587X.20210427.

    王天一, 朱玉峰, 孙淼, 等. 三维重建联合吲哚菁绿术中导航在肝癌诊断和治疗中的应用[J]. 吉林大学学报(医学版), 2021, 47(4): 1014-1021. DOI: 10.13481/j.1671-587X.20210427.
    [19] GUO ZB, TANG WC, LI XH, et al. Application of three-dimensional CT reconstruction in the evaluation of tumor volume of hepatocellular carcinoma before hepatectomy[J]. Chin Hepatol, 2021, 26(9): 1003-1006, 1010. DOI: 10.3969/j.issn.1008-1704.2021.09.016.

    郭智辈, 唐文才, 李小华, 等. CT三维重建在原发性肝癌肝脏切除术前肿瘤体积评估中的应用[J]. 肝脏, 2021, 26(9): 1003-1006, 1010. DOI: 10.3969/j.issn.1008-1704.2021.09.016.
    [20] LAMADÉ W, GLOMBITZA G, FISCHER L, et al. The impact of 3-dimensional reconstructions on operation planning in liver surgery[J]. Arch Surg, 2000, 135(11): 1256-1261. DOI: 10.1001/archsurg.135.11.1256.
    [21] LI LH, WANG JW, XU HL, et al. Study on the clinical application of preoperative evaluation of liver using three-dimensional reconstruction[J]. Henan J Surg, 2013, 19(5): 28-29. DOI: 10.3969/j.issn.1007-8991.2013.05.016.

    李连海, 王建伟, 许惠玲, 等. 三维重建在肝切除术前评估的临床应用研究[J]. 河南外科学杂志, 2013, 19(5): 28-29. DOI: 10.3969/j.issn.1007-8991.2013.05.016.
    [22] YOKOYAMA Y, NISHIO H, EBATA T, et al. Value of indocyanine green clearance of the future liver remnant in predicting outcome after resection for biliary cancer[J]. Br J Surg, 2010, 97(8): 1260-1268. DOI: 10.1002/bjs.7084.
    [23] TSUDA N, OKADA M, MURAKAMI T. New proposal for the staging of nonalcoholic steatohepatitis: evaluation of liver fibrosis on Gd-EOB-DTPA-enhanced MRI[J]. Eur J Radiol, 2010, 73(1): 137-142. DOI: 10.1016/j.ejrad.2008.09.036.
    [24] de GRAAF W, van LIENDEN KP, van den ESSCHERT JW, et al. Increase in future remnant liver function after preoperative portal vein embolization[J]. Br J Surg, 2011, 98(6): 825-834. DOI: 10.1002/bjs.7456.
    [25] YAMADA S, SHIMADA M, MORINE Y, et al. A new formula to calculate the resection limit in hepatectomy based on Gd-EOB-DTPA enhanced +magnetic resonance imaging[J]. PLoS One, 2019, 14(1): e0210579. DOI: 10.1371/journal.pone.0210579.
    [26] COSTA AF, TREMBLAY ST-GERMAIN A, ABDOLELL M, et al. Can contrast-enhanced MRI with gadoxetic acid predict liver failure and other complications after major hepatic resection?[J]. Clin Radiol, 2017, 72(7): 598-605. DOI: 10.1016/j.crad.2017.02.004.
    [27] BARTH BK, FISCHER MA, KAMBAKAMBA P, et al. Liver-fat and liver-function indices derived from Gd-EOB-DTPA-enhanced liver MRI for prediction of future liver remnant growth after portal vein occlusion[J]. Eur J Radiol, 2016, 85(4): 843-849. DOI: 10.1016/j.ejrad.2016.02.008.
    [28] SOURBRON SP, BUCKLEY DL. Classic models for dynamic contrast-enhanced MRI[J]. NMR Biomed, 2013, 26(8): 1004-1027. DOI: 10.1002/nbm.2940.
    [29] KEPPLER D. The roles of MRP2, MRP3, OATP1B1, and OATP1B3 in conjugated hyperbilirubinemia[J]. Drug Metab Dispos, 2014, 42(4): 561-565. DOI: 10.1124/dmd.113.055772.
    [30] WANG YY, ZHAO XH, MA L, et al. Comparison of the ability of Child-Pugh score, MELD score, and ICG-R15 to assess preoperative hepatic functional reserve in patients with hepatocellular carcinoma[J]. J Surg Oncol, 2018, 118(3): 440-445. DOI: 10.1002/jso.25184.
    [31] WEN X, YAO M, LU Y, et al. Integration of prealbumin into child-pugh classification improves prognosis predicting accuracy in HCC patients considering curative surgery[J]. J Clin Transl Hepatol, 2018, 6(4): 377-384. DOI: 10.14218/JCTH.2018.00004.
    [32] JOHNSON PJ, BERHANE S, KAGEBAYASHI C, et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade[J]. J Clin Oncol, 2015, 33(6): 550-558. DOI: 10.1200/JCO.2014.57.9151.
    [33] TSILIMIGRAS DI, HYER JM, MORIS D, et al. Prognostic utility of albumin-bilirubin grade for short- and long-term outcomes following hepatic resection for intrahepatic cholangiocarcinoma: A multi-institutional analysis of 706 patients[J]. J Surg Oncol, 2019, 120(2): 206-213. DOI: 10.1002/jso.25486.
    [34] ZOU H, WEN Y, YUAN K, et al. Combining albumin-bilirubin score with future liver remnant predicts post-hepatectomy liver failure in HBV-associated HCC patients[J]. Liver Int, 2018, 38(3): 494-502. DOI: 10.1111/liv.13514.
    [35] MA XL, ZHOU JY, GAO XH, et al. Application of the albumin-bilirubin grade for predicting prognosis after curative resection of patients with early-stage hepatocellular carcinoma[J]. Clin Chim Acta, 2016, 462: 15-22. DOI: 10.1016/j.cca.2016.08.005.
    [36] SONG L, PIAO SM, YAO H, et al. Application progress of albumin-bilirubin score in liver diseases[J]. J Clin Intern Med, 2022, 39(7): 502-504. DOI: 10.3969/j.issn.1001-9057.2022.07.022.

    宋丽, 朴顺梅, 姚红, 等. 白蛋白-胆红素评分在肝脏疾病中的应用进展[J]. 临床内科杂志, 2022, 39(7): 502-504. DOI: 10.3969/j.issn.1001-9057.2022.07.022.
    [37] LI M, WANG J, SONG J, et al. Preoperative ICG test to predict posthepatectomy liver failure and postoperative outcomes in hilar cholangiocarcinoma[J]. Biomed Res Int, 2021, 2021: 8298737. DOI: 10.1155/2021/8298737.
    [38] VOS JJ, WIETASCH JK, ABSALOM AR, et al. Green light for liver function monitoring using indocyanine green? An overview of current clinical applications[J]. Anaesthesia, 2014, 69(12): 1364-1376. DOI: 10.1111/anae.12755.
    [39] LE ROY B, GRÉGOIRE E, COSSÉ C, et al. Indocyanine green retention rates at 15 min predicted hepatic decompensation in a Western population[J]. World J Surg, 2018, 42(8): 2570-2578. DOI: 10.1007/s00268-018-4464-6.
    [40] WANG YY, ZHAO XH, MA L, et al. Comparison of the ability of Child-Pugh score, MELD score, and ICG-R15 to assess preoperative hepatic functional reserve in patients with hepatocellular carcinoma[J]. J Surg Oncol, 2018, 118(3): 440-445. DOI: 10.1002/jso.25184.
    [41] IBIS C, ALBAYRAK D, SAHINER T, et al. Value of preoperative indocyanine green clearance test for predicting post-hepatectomy liver failure in noncirrhotic patients[J]. Med Sci Monit, 2017, 23: 4973-4980. DOI: 10.12659/msm.907306.
    [42] MARUYAMA M, YOSHIZAKO T, ARAKI H, et al. Future liver remnant indocyanine green plasma clearance rate as a predictor of post-hepatectomy liver failure after portal vein embolization[J]. Cardiovasc Intervent Radiol, 2018, 41(12): 1877-1884. DOI: 10.1007/s00270-018-2065-2.
    [43] VOS JJ, WIETASCH JK, ABSALOM AR, et al. Green light for liver function monitoring using indocyanine green? An overview of current clinical applications[J]. Anaesthesia, 2014, 69(12): 1364-1376. DOI: 10.1111/anae.12755.
    [44] MIYAZAKI Y, KOKUDO T, AMIKURA K, et al. Albumin-indocyanine green evaluation grading system predicts post-hepatectomy liver failure for biliary tract cancer[J]. Dig Surg, 2019, 36(1): 13-19. DOI: 10.1159/000486142.
    [45] NAKAMURA I, ⅡMURO Y, HAI S, et al. Impaired Value of 99m Tc-GSA Scintigraphy as an independent risk factor for posthepatectomy liver failure in patients with hepatocellular carcinoma[J]. Eur Surg Res, 2018, 59(1-2): 12-22. DOI: 10.1159/000484044.
    [46] CHIBA N, YOKOZUKA K, OCHIAI S, et al. The diagnostic value of 99m-Tc GSA scintigraphy for liver function and remnant liver volume in hepatic surgery: a retrospective observational cohort study in 27 patients[J]. Patient Saf Surg, 2018, 12: 15. DOI: 10.1186/s13037-018-0161-5.
    [47] TOKORODANI R, SUMIYOSHI T, OKABAYASHI T, et al. Liver fibrosis assessment using 99mTc-GSA SPECT/CT fusion imaging[J]. Jpn J Radiol, 2019, 37(4): 315-320. DOI: 10.1007/s11604-019-00810-w.
    [48] HUANG X, CHEN Y, SHAO M, et al. The value of 99mTc-labeled galactosyl human serum albumin single-photon emission computerized tomography/computed tomography on regional liver function assessment and posthepatectomy failure prediction in patients with hilar cholangiocarcinoma[J]. Nucl Med Commun, 2020, 41(11): 1128-1135. DOI: 10.1097/MNM.0000000000001263.
    [49] de GRAAF W, HÄUSLER S, HEGER M, et al. Transporters involved in the hepatic uptake of (99m)Tc-mebrofenin and indocyanine green[J]. J Hepatol, 2011, 54(4): 738-745. DOI: 10.1016/j.jhep.2010.07.047.
    [50] CIESLAK KP, BENNINK RJ, de GRAAF W, et al. Measurement of liver function using hepatobiliary scintigraphy improves risk assessment in patients undergoing major liver resection[J]. HPB (Oxford), 2016, 18(9): 773-780. DOI: 10.1016/j.hpb.2016.06.006.
    [51] GUPTA M, CHOUDHURY PS, SINGH S, et al. Liver functional volumetry by Tc-99m mebrofenin hepatobiliary scintigraphy before major liver resection: a game changer[J]. Indian J Nucl Med, 2018, 33(4): 277-283. DOI: 10.4103/ijnm.IJNM_72_18.
    [52] LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
    [53] FENG ST, JIA YM, LIAO B, et al. Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI[J]. Eur Radiol, 2019, 29(9): 4648-4659. DOI: 10.1007/s00330-018-5935-8.
    [54] CHEN W, ZHANG T, XU L, et al. Radiomics analysis of contrast-enhanced CT for hepatocellular carcinoma grading[J]. Front Oncol, 2021, 11: 660509. DOI: 10.3389/fonc.2021.660509.
    [55] YANG L, GU D, WEI J, et al. A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Liver Cancer, 2019, 8(5): 373-386. DOI: 10.1159/000494099.
    [56] FONTAINE P, RIET FG, CASTELLI J, et al. Comparison of feature selection in radiomics for the prediction of overall survival after radiotherapy for hepatocellular carcinoma[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 2020: 1667-1670. DOI: 10.1109/EMBC44109.2020.9176724.
    [57] FANG X, GUO PF, FAN JH, et al. Clinical decision support system based on explainable artificial intelligence brain of Mengchao liver disease[J]. Chin J Dig Surg, 2023, 22(1): 70-80. DOI: 10.3760/cma.j.cn115610-20221102-00679.

    方旭, 郭鹏飞, 范鉴慧, 等. 基于可解释人工智能的临床决策支持系统: 孟超肝病外脑[J]. 中华消化外科杂志, 2023, 22(1): 70-80. DOI: 10.3760/cma.j.cn115610-20221102-00679.
    [58] ESTEVA A, ROBICQUET A, RAMSUNDAR B, et al. A guide to deep learning in healthcare[J]. Nat Med, 2019, 25(1): 24-29. DOI: 10.1038/s41591-018-0316-z.
    [59] CHENG PM, MONTAGNON E, YAMASHITA R, et al. Deep learning: An update for radiologists[J]. Radiographics, 2021, 41(5): 1427-1445. DOI: 10.1148/rg.2021200210.
  • 加载中
表(2)
计量
  • 文章访问数:  588
  • HTML全文浏览量:  106
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-17
  • 录用日期:  2022-10-24
  • 出版日期:  2023-05-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回