中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肝细胞癌早期筛查和诊断的研究进展

韩家鑫 宓余强 徐亮

引用本文:
Citation:

肝细胞癌早期筛查和诊断的研究进展

DOI: 10.3969/j.issn.1001-5256.2023.06.033
基金项目: 

天津市卫生健康科技项目重点学科专项 (TJWJ2022XK034);

天津市医学重点学科(专科)建设项目资助 (TJYXZDXK-059B);

天津市卫生健康委员会中西医结合科研课题重点项目 (2021022)

利益冲突声明: 本文不存在任何利益冲突。
作者贡献声明: 韩家鑫负责查找文献,撰写论文初稿;宓余强负责分析文献,进行文稿审改;徐亮负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    徐亮,xuyangliang2004@sina.com (ORCID:0000-0001-5441-1217)

Research advances in early screening and diagnosis of hepatocellular carcinoma

Research funding: 

Tianjin Health Science and Technology Project Key Disciplines (TJWJ2022XK034);

Tianjin Key Medical Discipline (Specialty) Construction Project (TJYXZDXK-059B);

Key Scientific Research Project of Integrated Traditional Chinese and Western Medicine of Tianjin Health Commission (2021022)

More Information
  • 摘要: 针对高危人群,早期筛查、早期诊断是实现肝癌很好控制、减轻肝癌负担的重要措施。其中,确定肝癌的高危人群和制定适合的肝癌筛查策略是实现肝癌早期筛查和诊断的关键。肝癌风险评估模型是对肝癌的高危人群便捷和快速识别的重要手段。在肝癌风险分层评估的基础上,应用影像学技术、血清学标志物、液体活组织检查、代谢组学及糖组学等方法,实现肝癌精准早筛、早诊,从而达到早治目的。

     

  • 表  1  全球各国/地区对肝癌高风险人群的定义

    Table  1.   Definition of population at high risk of HCC by countries/regions in the world

    题目 制定机构 高风险人群定义
    原发性肝癌诊疗指南(2022年版)[3] 国家卫生健康委办公厅 (1)乙型肝炎和/或丙型肝炎;
    (2)过度饮酒;
    (3)非酒精性脂肪性肝炎;
    (4)长期食用被黄曲霉毒素污染的食物;
    (5)各种原因引起的肝硬化;
    (6)肝癌家族史;
    (7)年龄>40岁、男性
    EASL clinical practice guidelines:management of hepatocellular carcinoma[5] 欧洲肝病学会(EASL) (1)Child-Pugh A级和B级肝硬化;
    (2)Child- Pugh C级等待肝移植的肝硬化患者
    AASLD guidelines for the treatment of hepatocellular carcinoma[6] 美国肝病学会(AASLD) 肝硬化
    Management of hepatocellular carcinoma in Japan:JSH consensus statements and recommendations 2021 update[7] 日本肝病学会(JSH) (1)超高危人群:既有病毒性肝炎也有肝硬化;
    (2)高危人群:肝硬化、慢性乙型肝炎和丙型肝炎
    Hepatocellular carcinoma:ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[8] 欧洲肿瘤内科学会(ESMO) 肝硬化
    下载: 导出CSV

    表  2  肝癌风险评估的预测模型

    Table  2.   Prediction model for HCC risk assessment

    模型 制定国家/ 地区 适用人群 变量参数
    THRI模型 多伦多 肝硬化人群 年龄、性别、肝硬化病因以及血小板计数
    REACH-B模型 中国台湾 HBV感染者 年龄、性别、ALT、HBeAg状态和HBV DNA水平
    PAGE-B模型 高加索 抗病毒治疗后HBV感染者 年龄、性别和血小板计数
    mPAGE-B模型 韩国 抗病毒治疗后HBV感染者 年龄、性别、血小板计数和白蛋白水平
    aMAP模型 多中心 多病因的慢性肝病患者 年龄、性别、胆红素水平、白蛋白水平和血小板计数
    APAC模型 德国 肝硬化人群 年龄、可溶性β血小板衍生生长因子受体、AFP和肌酐
    PLAN-B模型 多中心 HBV感染者 年龄、性别、肝硬化病因、血小板计数、抗病毒药物(恩替卡韦或富马酸替诺福韦酯)的使用、ALT、HBV DNA水平、白蛋白水平、HBeAg状态和胆红素水平
    下载: 导出CSV

    表  3  液体活检联合诊断技术的应用价值

    Table  3.   Application value of liquid biopsy combined with diagnostic techniques

    检测技术 敏感度 特异度
    甲基化(数字PCR) 92.5% 97.5%
    SWGS、片段组学 95.42% 97.83%
    甲基化、基因突变 88% 93%
    糖组学(蛋白) 83.61% 87.84%
    甲基化、CNV >90% >90%
    cfDNA、cfRNA、蛋白 97.9% 97.9%
    注:SWGS,低深度全基因组测序;CNV,拷贝数变异测序;cfRNA,细胞游离RNA。
    下载: 导出CSV
  • [1] SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
    [2] ZHOU M, WANG H, ZENG X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2019, 394(10204): 1145-1158. DOI: 10.1016/S0140-6736(19)30427-1.
    [3] General Office of National Health Commission. Standard for diagnosis and treatment of primary liver cancer (2022 edition)[J]. J Clin Hepatol, 2022, 38(2): 288-303. DOI: 10.3969/j.issn.1001-5256.2022.02.009.

    国家卫生健康委办公厅. 原发性肝癌诊疗指南(2022年版)[J]. 临床肝胆病杂志, 2022, 38(2): 288-303. DOI: 10.3969/j.issn.1001-5256.2022.02.009.
    [4] XIAO J, WANG F, WONG NK, et al. Global liver disease burdens and research trends: Analysis from a Chinese perspective[J]. J Hepatol, 2019, 71(1): 212-221. DOI: 10.1016/j.jhep.2019.03.004.
    [5] BRUIX J, CHAN SL, GALLE PR, et al. Systemic treatment of hepatocellular carcinoma: An EASL position paper[J]. J Hepatol, 2021, 75(4): 960-974. DOI: 10.1016/j.jhep.2021.07.004.
    [6] HEIMBACH JK, KULIK LM, FINN RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma[J]. Hepatology, 2018, 67(1): 358-380. DOI: 10.1002/hep.29086.
    [7] KUDO M, KAWAMURA Y, HASEGAWA K, et al. Management of hepatocellular carcinoma in Japan: JSH consensus statements and recommendations 2021 update[J]. Liver Cancer, 2021, 10(3): 181-223. DOI: 10.1159/000514174.
    [8] VOGEL A, CERVANTES A, CHAU I, et al. Correction to: "Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up"[J]. Ann Oncol, 2019, 30(5): 871-873. DOI: 10.1093/annonc/mdy510.
    [9] SHARMA SA, KOWGIER M, HANSEN BE, et al. Toronto HCC risk index: A validated scoring system to predict 10-year risk of HCC in patients with cirrhosis[J]. J Hepatol, 2018, 68(1): 92-99. DOI: 10.1016/j.jhep.2017.07.033.
    [10] ZHANG H, ZHU J, XI L, et al. Validation of the Toronto hepatocellular carcinoma risk index for patients with cirrhosis in China: a retrospective cohort study[J]. World J Surg Oncol, 2019, 17(1): 75. DOI: 10.1186/s12957-019-1619-3.
    [11] YANG HI, YUEN MF, CHAN HL, et al. Risk estimation for hepatocellular carcinoma in chronic hepatitis B (REACH-B): development and validation of a predictive score[J]. Lancet Oncol, 2011, 12(6): 568-574. DOI: 10.1016/S1470-2045(11)70077-8.
    [12] PAPATHEODORIDIS G, DALEKOS G, SYPSA V, et al. PAGE-B predicts the risk of developing hepatocellular carcinoma in Caucasians with chronic hepatitis B on 5-year antiviral therapy[J]. J Hepatol, 2016, 64(4): 800-806. DOI: 10.1016/j.jhep.2015.11.035.
    [13] LEE HW, KIM SU, PARK JY, et al. External validation of the modified PAGE-B score in Asian chronic hepatitis B patients receiving antiviral therapy[J]. Liver Int, 2019, 39(9): 1624-1630. DOI: 10.1111/liv.14129.
    [14] LAMBRECHT J, PORSCH-ÖZÇÜRÜMEZ M, BEST J, et al. The APAC score: a novel and highly performant serological tool for early diagnosis of hepatocellular carcinoma in patients with liver cirrhosis[J]. J Clin Med, 2021, 10(15): 3392. DOI: 10.3390/jcm10153392.
    [15] LI XH, HAO X, DENG YH, et al. The aMAP score was used to assess the risk of liver cancer among people with chronic liver disease in primary hospitals[J]. Chin J Hepatol, 2021, 29(4): 332-337. DOI: 10.3760/cma.j.cn501113-20210329-00144.

    李秀华, 郝新, 邓永红, 等. 应用aMAP评分评估基层医院慢性肝病人群的肝癌发生风险[J]. 中华肝脏病杂志, 2021, 29(4): 332-337. DOI: 10.3760/cma.j.cn501113-20210329-00144.
    [16] KIM HY, LAMPERTICO P, NAM JY, et al. An artificial intelligence model to predict hepatocellular carcinoma risk in Korean and Caucasian patients with chronic hepatitis B[J]. J Hepatol, 2022, 76(2): 311-318. DOI: 10.1016/j.jhep.2021.09.025.
    [17] HARRIS PS, HANSEN RM, GRAY ME, et al. Hepatocellular carcinoma surveillance: An evidence-based approach[J]. World J Gastroenterol, 2019, 25(13): 1550-1559. DOI: 10.3748/wjg.v25.i13.1550.
    [18] CHOI J, KIM GA, HAN S, et al. Longitudinal assessment of three serum biomarkers to detect very early-stage hepatocellular carcinoma[J]. Hepatology, 2019, 69(5): 1983-1994. DOI: 10.1002/hep.30233.
    [19] HUGHES DM, BERHANE S, EMILY DE GROOT CA, et al. Serum levels of α-fetoprotein increased more than 10 years before detection of hepatocellular carcinoma[J]. Clin Gastroenterol Hepatol, 2021, 19(1): 162-170. e4. DOI: 10.1016/j.cgh.2020.04.084.
    [20] YAN YF, WANG YT, ZHU C, et al. Meta analysis of the accuracy of liver cancer screening technology[J]. Chin J Evid-Based Med, 2018, 18(5): 418-427. DOI: 10.7507/1672-2531.201802055.

    严永锋, 王宇婷, 朱陈, 等. 肝癌筛查技术准确性的Meta分析[J]. 中国循证医学杂志, 2018, 18(5): 418-427. DOI: 10.7507/1672-2531.201802055.
    [21] ROBERTS LR, SIRLIN CB, ZAIEM F, et al. Imaging for the diagnosis of hepatocellular carcinoma: A systematic review and meta-analysis[J]. Hepatology, 2018, 67(1): 401-421. DOI: 10.1002/hep.29487.
    [22] NADAREVIC T, COLLI A, GILJACA V, et al. Magnetic resonance imaging for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease[J]. Cochrane Database Syst Rev, 2022, 5(5): CD014798. DOI: 10.1002/14651858.CD014798.pub2.
    [23] GAO F, WEI Y, ZHANG T, et al. New liver MR imaging hallmarks for small hepatocellular carcinoma screening and diagnosing in high-risk patients[J]. Front Oncol, 2022, 12: 812832. DOI: 10.3389/fonc.2022.812832.
    [24] LV K, ZHAI H, JIANG Y, et al. Prospective assessment of diagnostic efficacy and safety of SonazoidTM and SonoVue® ultrasound contrast agents in patients with focal liver lesions[J]. Abdom Radiol (NY), 2021, 46(10): 4647-4659. DOI: 10.1007/s00261-021-03010-1.
    [25] FRAQUELLI M, NADAREVIC T, COLLI A, et al. Contrast- enhanced ultrasound for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease[J]. Cochrane Database Syst Rev, 2022, 9(9): CD013483. DOI: 10.1002/14651858.CD013483.pub2.
    [26] ZHANG L, GU J, LI Y, et al. Clinical value study on contrast-enhanced ultrasound combined with enhanced CT in early diagnosis of primary hepatic carcinoma[J]. Contrast Media Mol Imaging, 2022, 2022: 7130533. DOI: 10.1155/2022/7130533.
    [27] LIU D, LIU F, XIE X, et al. Accurate prediction of responses to transarterial chemoembolization for patients with hepatocellular carcinoma by using artificial intelligence in contrast-enhanced ultrasound[J]. Eur Radiol, 2020, 30(4): 2365-2376. DOI: 10.1007/s00330-019-06553-6.
    [28] YASAKA K, AKAI H, ABE O, et al. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study[J]. Radiology, 2018, 286(3): 887-896. DOI: 10.1148/radiol.2017170706.
    [29] HU HT, WANG W, CHEN LD, et al. Artificial intelligence assists identifying malignant versus benign liver lesions using contrast-enhanced ultrasound[J]. J Gastroenterol Hepatol, 2021, 36(10): 2875-2883. DOI: 10.1111/jgh.15522.
    [30] ZHOU JM, WANG T, ZHANG KH. AFP-L3 for the diagnosis of early hepatocellular carcinoma: A meta-analysis[J]. Medicine (Baltimore), 2021, 100(43): e27673. DOI: 10.1097/MD.0000000000027673.
    [31] CHOI J, KIM GA, HAN S, et al. Longitudinal assessment of three serum biomarkers to detect very early-stage hepatocellular carcinoma[J]. Hepatology, 2019, 69(5): 1983-1994. DOI: 10.1002/hep.30233.
    [32] BEST J, BECHMANN LP, SOWA JP, et al. GALAD score detects early hepatocellular carcinoma in an international cohort of patients with nonalcoholic steatohepatitis[J]. Clin Gastroenterol Hepatol, 2020, 18(3): 728-735. e4. DOI: 10.1016/j.cgh.2019.11.012.
    [33] CAVIGLIA GP, CIRUOLO M, ABATE ML, et al. Alpha-fetoprotein, protein induced by vitamin K absence or antagonist ii and glypican-3 for the detection and prediction of hepatocellular carcinoma in patients with cirrhosis of viral Etiology[J]. Cancers (Basel), 2020, 12(11): 3218. DOI: 10.3390/cancers12113218.
    [34] SAMMAN BS, HUSSEIN A, SAMMAN RS, et al. Common sensitive diagnostic and prognostic markers in hepatocellular carcinoma and their clinical significance: a Review[J]. Cureus, 2022, 14(4): e23952. DOI: 10.7759/cureus.23952.
    [35] SHAKER MK, ATTIA FM, HASSAN AA, et al. Evaluation of golgi protein 73 (GP73) as a potential biomarkers for hepatocellular carcinoma[J]. Clin Lab, 2020, 66(8): 190911. DOI: 10.7754/Clin.Lab.2020.190911.
    [36] YAMASHITA T, KOSHIKAWA N, SHIMAKAMI T, et al. Serum laminin γ2 monomer as a diagnostic and predictive biomarker for hepatocellular carcinoma[J]. Hepatology, 2021, 74(2): 760-775. DOI: 10.1002/hep.31758.
    [37] CHEN L, ZHANG H, JIANG B. Diagnostic value of combined detection of serum AFP, GGTI Ⅱ, AFU and DCP in liver cancer[J]. J Mol Diagn Ther, 2022, 14 (8): 1283-1286, 1291. DOI: 10.3969/j.issn.1674-6929.2022.08.006.

    陈琳, 张恒, 江斌. 血清AFP、GGTIⅡ、AFU和DCP联合检测对肝癌的诊断价值[J]. 分子诊断与治疗杂志, 2022, 14(8): 1283-1286, 1291. DOI: 10.3969/j.issn.1674-6929.2022.08.006.
    [38] EUN JW, JANG JW, YANG HD, et al. Serum proteins, HMMR, NXPH4, PITX1 and THBS4; a panel of biomarkers for early diagnosis of hepatocellular carcinoma[J]. J Clin Med, 2022, 11(8): 2128. DOI: 10.3390/jcm11082128.
    [39] CHEN L, ABOU-ALFA GK, ZHENG B, et al. Genome-scale profiling of circulating cell-free DNA signatures for early detection of hepatocellular carcinoma in cirrhotic patients[J]. Cell Res, 2021, 31(5): 589-592. DOI: 10.1038/s41422-020-00457-7.
    [40] CHALASANI NP, RAMASUBRAMANIAN TS, BHATTACHARYA A, et al. A novel blood-based panel of methylated dna and protein markers for detection of early-stage hepatocellular carcinoma[J]. Clin Gastroenterol Hepatol, 2021, 19(12): 2597-2605. e4. DOI: 10.1016/j.cgh.2020.08.065.
    [41] ZHOU J, YU L, GAO X, et al. Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma[J]. J Clin Oncol, 2011, 29(36): 4781-4788. DOI: 10.1200/JCO.2011.38.2697.
    [42] LI YS, YANG ZG, CHEN Y, et al. Differential expression profile of cyclic RNA in serum exocrine bodies of hepatocellular carcinoma and its clinical significance[J]. J Hepatopancreatobiliary Surg, 2022, 34(5): 283-287. DOI: 10.11952/j.issn.1007-1954.2022.05.006.

    李叶晟, 杨宗国, 陈晹, 等. 肝癌血清外泌体环状RNA表达谱差异及其临床意义[J]. 肝胆胰外科杂志, 2022, 34(5): 283-287. DOI: 10.11952/j.issn.1007-1954.2022.05.006.
    [43] Large scale prospective cohort study data of early screening liquid biopsy for liver cancer[EB/OL]. [2021-09-01]. https://www.genetronhealth.com/product_detail.html.

    肝癌早筛液体活检大规模前瞻性队列研究数据[EB/OL]. [2021-09-01]. https://www.genetronhealth.com/product_detail.html.
    [44] LIN N, LIN Y, XU J, et al. A multi-analyte cell-free DNA-based blood test for early detection of hepatocellular carcinoma[J]. Hepatol Commun, 2022, 6(7): 1753-1763. DOI: 10.1002/hep4.1918.
    [45] ZHAN S, YANG P, ZHOU S, et al. Serum mitochondrial tsRNA serves as a novel biomarker for hepatocarcinoma diagnosis[J]. Front Med, 2022, 16(2): 216-226. DOI: 10.1007/s11684-022-0920-7.
    [46] LI Y, LI R, CHENG D, et al. The potential of CircRNA1002 as a biomarker in hepatitis B virus-related hepatocellular carcinoma[J]. Peer J, 2022, 10: e13640. DOI: 10.7717/peerj.13640.
    [47] STEPIEN M, KESKI-RAHKONEN P, KISS A, et al. Metabolic perturbations prior to hepatocellular carcinoma diagnosis: Findings from a prospective observational cohort study[J]. Int J Cancer, 2021, 148(3): 609-625. DOI: 10.1002/ijc.33236.
    [48] WANG SF, BAI ZF, YANG X, et al. Determination of serum metabolic group in patients with hepatocellular carcinoma by UPLC-QTOF-MS/MS technique[J]. Chin J Pharmacol Toxicol, 2020, 34(12): 918-929. DOI: 10.3867/j.issn.1000-3002.2020.12.004.

    王淑凤, 柏兆方, 杨馨, 等. 应用UPLC-QTOF-MS/MS技术测定肝细胞癌患者血清代谢组[J]. 中国药理学与毒理学杂志, 2020, 34(12): 918-929. DOI: 10.3867/j.issn.1000-3002.2020.12.004.
    [49] LIU J, GENG W, SUN H, et al. Integrative metabolomic characterisation identifies altered portal vein serum metabolome contributing to human hepatocellular carcinoma[J]. Gut, 2022, 71(6): 1203-1213. DOI: 10.1136/gutjnl-2021-325189.
    [50] YANG T, WANG Y, DAI W, et al. Increased B3GALNT2 in hepatocellular carcinoma promotes macrophage recruitment via reducing acetoacetate secretion and elevating MIF activity[J]. J Hematol Oncol, 2018, 11(1): 50. DOI: 10.1186/s13045-018-0595-3.v
    [51] CONG M, OU X, HUANG J, et al. A predictive model using n-glycan biosignatures for clinical diagnosis of early hepatocellular carcinoma related to hepatitis B virus[J]. OMICS, 2020, 24(7): 415-423. DOI: 10.1089/omi.2020.0055.
  • 加载中
表(3)
计量
  • 文章访问数:  705
  • HTML全文浏览量:  143
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-30
  • 录用日期:  2022-10-24
  • 出版日期:  2023-06-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回