中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于NK细胞的免疫治疗在肝癌中的研究进展

程世纪 匡天瑞 董可帅 余佳

引用本文:
Citation:

基于NK细胞的免疫治疗在肝癌中的研究进展

DOI: 10.3969/j.issn.1001-5256.2023.06.034
基金项目: 

国家自然科学基金 (82003063);

武汉大学学位与研究生教育改革研究项目 (1605-413200097)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:程世纪负责查找文献,撰写文章;匡天瑞、董可帅负责修改文章; 余佳负责指导撰写文章并最后定稿。
详细信息
    通信作者:

    余佳,hbpennhmp116@163.com (ORCID:0000-0002-2503-0025)

Research advances in natural killer cell-based immunotherapy in liver cancer

Research funding: 

National Natural Science Foundation of China (82003063);

Research Project of Degree and Postgraduate Education Reform of Wuhan University (1605-413200097)

More Information
  • 摘要: 自然杀伤细胞(NK细胞)是人体重要的免疫细胞,也是肝内主要的淋巴细胞,被认为是抵御肿瘤的第一道防线,对肝癌发生发展有重大影响。NK细胞所具有的特性,使其成为免疫治疗的新选择,基于NK细胞的免疫疗法或将在肝癌治疗中取得成功。本文就NK细胞的生物学特征、其在肝癌发生发展中的作用及相关治疗中的研究进展进行综述。

     

  • [1] SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
    [2] SAJID M, LIU L, SUN C. The dynamic role of NK cells in liver cancers: role in HCC and HBV associated HCC and its therapeutic implications[J]. Front Immunol, 2022, 13: 887186. DOI: 10.3389/fimmu.2022.887186.
    [3] LI J, TAO L, WANG X. Cytotoxic immune cell-based immunotherapy for hepatocellular carcinoma[J]. Hepatoma Research, 2020, 6: 15. DOI: 10.20517/2394-5079.2019.34.
    [4] MARQUARDT N, BÉZIAT V, NYSTRÖM S, et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells[J]. J Immunol, 2015, 194(6): 2467-2471. DOI: 10.4049/jimmunol.1402756.
    [5] MICHEL T, OLLERT M, ZIMMER J. A hot topic: Cancer immunotherapy and natural killer cells[J]. Int J Mol Sci, 2022, 23(2): 797. DOI: 10.3390/ijms23020797.
    [6] KALATHIL SG, THANAVALA Y. Natural killer cells and T cells in hepatocellular carcinoma and viral hepatitis: Current status and perspectives for future immunotherapeutic approaches[J]. Cells, 2021, 10(6). DOI: 10.3390/cells10061332.
    [7] LIU P, CHEN L, ZHANG H. Natural killer cells in liver disease and hepatocellular carcinoma and the NK cell-based immunotherapy[J]. J Immunol Res, 2018, 2018: 1206737. DOI: 10.1155/2018/1206737.
    [8] POZNANSKI SM, SINGH K, RITCHIE TM, et al. Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment[J]. Cell Metab, 2021, 33(6): 1205-1220. e5. DOI: 10.1016/j.cmet.2021.03.023.
    [9] OURA K, MORISHITA A, TANI J, et al. Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: a review[J]. Int J Mol Sci, 2021, 22(11): 5801. DOI: 10.3390/ijms22115801.
    [10] MIKULAK J, BRUNI E, ORIOLO F, et al. Hepatic natural killer cells: Organ-specific sentinels of liver immune homeostasis and physiopathology[J]. Front Immunol, 2019, 10: 946. DOI: 10.3389/fimmu.2019.00946.
    [11] PESCE S, GREPPI M, TABELLINI G, et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: A phenotypic and functional characterization[J]. J Allergy Clin Immunol, 2017, 139(1): 335-346. e3. DOI: 10.1016/j.jaci.2016.04.025.
    [12] WONG J, KWOK G, TANG V, et al. Ipilimumab and nivolumab/pembrolizumab in advanced hepatocellular carcinoma refractory to prior immune checkpoint inhibitors[J]. J Immunother Cancer, 2021, 9(2): e001945. DOI: 10.1136/jitc-2020-001945.
    [13] LIN M, LUO H, LIANG S, et al. Pembrolizumab plus allogeneic NK cells in advanced non-small cell lung cancer patients[J]. J Clin Invest, 2020, 130(5): 2560-2569. DOI: 10.1172/JCI132712.
    [14] BARRUETO L, CAMINERO F, CASH L, et al. Resistance to checkpoint inhibition in cancer immunotherapy[J]. Transl Oncol, 2020, 13(3): 100738. DOI: 10.1016/j.tranon.2019.12.010.
    [15] TAN S, XU Y, WANG Z, et al. Tim-3 hampers tumor surveillance of liver-resident and conventional NK cells by disrupting PI3K signaling[J]. Cancer Res, 2020, 80(5): 1130-1142. DOI: 10.1158/0008-5472.CAN-19-2332.
    [16] DEUSS FA, WATSON GM, FU Z, et al. Structural basis for CD96 immune receptor recognition of nectin-like protein-5, CD155[J]. Structure, 2019, 27(2): 219-228. e3. DOI: 10.1016/j.str.2018.10.023.
    [17] STAMM H, OLIVEIRA-FERRER L, GROSSJOHANN EM, et al. Targeting the TIGIT-PVR immune checkpoint axis as novel therapeutic option in breast cancer[J]. Oncoimmunology, 2019, 8(12): e1674605. DOI: 10.1080/2162402X.2019.1674605.
    [18] SUN H, HUANG Q, HUANG M, et al. Human CD96 correlates to natural killer cell exhaustion and predicts the prognosis of human hepatocellular carcinoma[J]. Hepatology, 2019, 70(1): 168-183. DOI: 10.1002/hep.30347.
    [19] AHN M, NIU J, KIM D, et al. Vibostolimab, an anti-TIGIT antibody, as monotherapy and in combination with pembrolizumab in anti-PD-1/PD-L1-refractory NSCLC[J]. Ann Oncol, 2020, 31: S887. DOI: 10.1016/j.annonc.2020.08.1714.
    [20] BLAKE SJ, DOUGALL WC, MILES JJ, et al. Molecular pathways: Targeting CD96 and TIGIT for cancer immunotherapy[J]. Clin Cancer Res, 2016, 22(21): 5183-5188. DOI: 10.1158/1078-0432.CCR-16-0933.
    [21] BUCKLE I, GUILLEREY C. Inhibitory receptors and immune checkpoints regulating natural killer cell responses to cancer[J]. Cancers (Basel), 2021, 13(17): 4263. DOI: 10.3390/cancers13174263.
    [22] KOHRT HE, THIELENS A, MARABELLE A, et al. Anti-KIR antibody enhancement of anti-lymphoma activity of natural killer cells as monotherapy and in combination with anti-CD20 antibodies[J]. Blood, 2014, 123(5): 678-686. DOI: 10.1182/blood-2013-08-519199.
    [23] ZHANG J, BASHER F, WU JD. NKG2D ligands in tumor immunity: two sides of a coin[J]. Front Immunol, 2015, 6: 97. DOI: 10.3389/fimmu.2015.00097.
    [24] OLIVIERO B, VARCHETTA S, MELE D, et al. MICA/B-targeted antibody promotes NK cell-driven tumor immunity in patients with intrahepatic cholangiocarcinoma[J]. Oncoimmunology, 2022, 11(1): 2035919. DOI: 10.1080/2162402X.2022.2035919.
    [25] FERRARI DE ANDRADE L, TAY RE, PAN D, et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity[J]. Science, 2018, 359(6383): 1537-1542. DOI: 10.1126/science.aao0505.
    [26] FELICES M, LENVIK TR, DAVIS ZB, et al. Generation of biKEs and triKEs to improve NK cell-Mediated targeting of tumor cells[J]. Methods Mol Biol, 2016, 1441: 333-346. DOI: 10.1007/978-1-4939-3684-7_28.
    [27] van FAASSEN H, JO D, RYAN S, et al. Incorporation of a novel CD16-specific single-domain antibody into multispecific natural killer cell engagers with potent ADCC[J]. Mol Pharmaceut, 2021, 18(6): 2375-2384. DOI: 10.1021/acs.molpharmaceut.1c00208.
    [28] ABEL AM, YANG C, THAKAR MS, et al. Natural killer cells: development, maturation, and clinical utilization[J]. Front Immunol, 2018, 9: 1869. DOI: 10.3389/fimmu.2018.01869.
    [29] MADDINENI S, SILBERSTEIN JL, SUNWOO JB. Emerging NK cell therapies for cancer and the promise of next generation engineering of iPSC-derived NK cells[J]. J Immunother Cancer, 2022, 10(9): e004693. DOI: 10.1136/jitc-2022-004693.
    [30] KLINGEMANN H, BOISSEL L, TONEGUZZO F. Natural killer cells for immunotherapy-advantages of the NK-92 cell line over blood NK cells[J]. Front Immunol, 2016, 7: 91. DOI: 10.3389/fimmu.2016.00091.
    [31] BERGMAN H, LINDQVIST C. Human IL-15 inhibits NK cells specific for human NK-92 cells[J]. Anticancer Res, 2021, 41(7): 3281-3285. DOI: 10.21873/anticanres.15114.
    [32] DAI K, WU Y, SHE S, et al. Advancement of chimeric antigen receptor-natural killer cells targeting hepatocellular carcinoma[J]. World J Gastrointest Oncol, 2021, 13(12): 2029-2037. DOI: 10.4251/wjgo.v13.i12.2029.
    [33] DAHER M, MELO GARCIA L, LI Y, et al. CAR-NK cells: the next wave of cellular therapy for cancer[J]. Clin Transl Immunology, 2021, 10(4): e1274. DOI: 10.1002/cti2.1274.
    [34] YU M, LUO H, FAN M, et al. Development of GPC3-specific chimeric antigen receptor-engineered natural killer cells for the treatment of hepatocellular carcinoma[J]. Mol Ther, 2018, 26(2): 366-378. DOI: 10.1016/j.ymthe.2017.12.012.
    [35] ZHAO J, LIN L, LUO Y, et al. Optimization of GPC3-specific chimeric antigen receptor structure and its effect on killing hepatocellular carcinoma cells[J]. Bioengineered, 2021, 12(1): 3674-3683. DOI: 10.1080/21655979.2021.1950261.
    [36] TSENG HC, XIONG W, BADETI S, et al. Efficacy of anti-CD147 chimeric antigen receptors targeting hepatocellular carcinoma[J]. Nat Commun, 2020, 11(1): 4810. DOI: 10.1038/s41467-020-18444-2.
    [37] ZHU H, BLUM RH, BERNAREGGI D, et al. Metabolic reprograming via deletion of CISH in Human iPSC-Derived NK cells promotes in vivo persistence and enhances anti-tumor activity[J]. Cell Stem Cell, 2020, 27(2): 224-237. e6. DOI: 10.1016/j.stem.2020.05.008.
    [38] NAEIMI KARAROUDI M, NAGAI Y, ELMAS E, et al. CD38 deletion of human primary NK cells eliminates daratumumab-induced fratricide and boosts their effector activity[J]. Blood, 2020, 136(21): 2416-2427. DOI: 10.1182/blood.2020006200.
    [39] ALLAN D, CHAKRABORTY M, WALLER GC, et al. Systematic improvements in lentiviral transduction of primary human natural killer cells undergoing ex vivo expansion[J]. Mol Ther Methods Clin Dev, 2021, 20: 559-571. DOI: 10.1016/j.omtm.2021.01.008.
    [40] FERNANDEZ JP, LUDDY KA, HARMON C, et al. Hepatic tumor microenvironments and effects on NK cell phenotype and function[J]. Int J Mol Sci, 2019, 20(17): 4131. DOI: 10.3390/ijms20174131.
    [41] ZHUANG L, FULTON RJ, RETTMAN P, et al. Activity of IL-12/15/18 primed natural killer cells against hepatocellular carcinoma[J]. Hepatol Int, 2019, 13(1): 75-83. DOI: 10.1007/s12072-018-9909-3.
    [42] ZHENG X, QIAN Y, FU B, et al. Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance[J]. Nat Immunol, 2019, 20(12): 1656-1667. DOI: 10.1038/s41590-019-0511-1.
    [43] YANG Y, LUNDQVIST A. Immunomodulatory effects of IL-2 and IL-15; Implications for cancer immunotherapy[J]. Cancers (Basel), 2020, 12(12): 3586. DOI: 10.3390/cancers12123586.
    [44] MASKALENKO NA, ZHIGAREV D, CAMPBELL KS. Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders[J]. Nat Rev Drug Discov, 2022, 21(8): 559-577. DOI: 10.1038/s41573-022-00413-7.
  • 加载中
计量
  • 文章访问数:  613
  • HTML全文浏览量:  139
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-18
  • 录用日期:  2022-11-10
  • 出版日期:  2023-06-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回