中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脂毒性在非酒精性脂肪性肝炎中的作用机制

郅果果 穆杰 邵冰杰 王东

引用本文:
Citation:

脂毒性在非酒精性脂肪性肝炎中的作用机制

DOI: 10.3969/j.issn.1001-5256.2023.07.024
基金项目: 

国家自然科学基金 (82104655)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:郅果果负责撰写论文;穆杰、邵冰杰负责查阅,归纳文献;王东负责指导撰写,修改论文。
详细信息
    通信作者:

    王东,wangdong@cdutcm.edu.cn (ORCID: 0000-0002-6387-9169)

Mechanism of action of lipotoxicity in nonalcoholic steatohepatitis

Research funding: 

National Natural Science Foundation of China (82104655)

More Information
  • 摘要: 非酒精性脂肪性肝炎(NASH)作为非酒精性脂肪性肝病(NAFLD)病情加剧的重要环节, 炎症和肝损伤是该阶段的重要病理学特征。脂毒性作为NASH的致病机制之一, 能够通过多种途径调控肝脏的炎症和肝细胞凋亡。本文从炎症和肝细胞凋亡两个层面重点阐述脂毒性对NASH的具体调控机制, 其中涉及了多种肝脏非实质细胞和JNK、NF-κB、caspase介导的细胞凋亡等信号通路, 为临床NASH的诊断和治疗提供了新思路。

     

  • [1] POVSIC M, WONG OY, PERRY R, et al. A structured literature review of the epidemiology and disease burden of non-alcoholic steatohepatitis (NASH)[J]. Adv Ther, 2019, 36(7): 1574-1594. DOI: 10.1007/s12325-019-00960-3.
    [2] YOUNOSSI ZM, STEPANOVA M, RAFIQ N, et al. Nonalcoholic steatofibrosis independently predicts mortality in nonalcoholic fatty liver disease[J]. Hepatol Commun, 2017, 1(5): 421-428. DOI: 10.1002/hep4.1054.
    [3] TILG H, ADOLPH TE, MOSCHEN AR. Multiple parallel hits hypothesis in nonalcoholic fatty liver disease: revisited after a decade[J]. Hepatology, 2021, 73(2): 833-842. DOI: 10.1002/hep.31518.
    [4] MARRA F, SVEGLIATI-BARONI G. Lipotoxicity and the gut-liver axis in NASH pathogenesis[J]. J Hepatol, 2018, 68(2): 280-295. DOI: 10.1016/j.jhep.2017.11.014.
    [5] RUI L. Energy metabolism in the liver[J]. Compr Physiol, 2014, 4(1): 177-197. DOI: 10.1002/cphy.c130024.
    [6] YAMAGUCHI K, YANG L, MCCALL S, et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis[J]. Hepatology, 2007, 45(6): 1366-1374. DOI: 10.1002/hep.21655.
    [7] IOANNOU GN. The role of cholesterol in the pathogenesis of NASH[J]. Trends Endocrinol Metab, 2016, 27(2): 84-95. DOI: 10.1016/j.tem.2015.11.008.
    [8] NEUSCHWANDER-TETRI BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites[J]. Hepatology, 2010, 52(2): 774-788. DOI: 10.1002/hep.23719.
    [9] WANG YJ, BIAN Y, LUO J, et al. Cholesterol and fatty acids regulate cysteine ubiquitylation of ACAT2 through competitive oxidation[J]. Nat Cell Biol, 2017, 19(7): 808-819. DOI: 10.1038/ncb3551.
    [10] GAN LT, van ROOYEN DM, KOINA ME, et al. Hepatocyte free cholesterol lipotoxicity results from JNK1-mediated mitochondrial injury and is HMGB1 and TLR4-dependent[J]. J Hepatol, 2014, 61(6): 1376-1384. DOI: 10.1016/j.jhep.2014.07.024.
    [11] HORN CL, MORALES AL, SAVARD C, et al. Role of cholesterol-associated steatohepatitis in the development of NASH[J]. Hepatol Commun, 2022, 6(1): 12-35. DOI: 10.1002/hep4.1801.
    [12] LIPKE K, KUBIS-KUBIAK A, PIWOWAR A. Molecular mechanism of lipotoxicity as an interesting aspect in the development of pathological states-current view of knowledge[J]. Cells, 2022, 11(5): 844. DOI: 10.3390/cells11050844.
    [13] LEAMY AK, EGNATCHIK RA, YOUNG JD. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease[J]. Prog Lipid Res, 2013, 52(1): 165-174. DOI: 10.1016/j.plipres.2012.10.004.
    [14] PAGADALA M, KASUMOV T, MCCULLOUGH AJ, et al. Role of ceramides in nonalcoholic fatty liver disease[J]. Trends Endocrinol Metab, 2012, 23(8): 365-371. DOI: 10.1016/j.tem.2012.04.005.
    [15] SIMON J, OURO A, ALA-IBANIBO L, et al. Sphingolipids in non-alcoholic fatty liver disease and hepatocellular carcinoma: ceramide turnover[J]. Int J Mol Sci, 2019, 21(1): 40. DOI: 10.3390/ijms21010040.
    [16] KOYAMA Y, BRENNER DA. Liver inflammation and fibrosis[J]. J Clin Invest, 2017, 127(1): 55-64. DOI: 10.1172/JCI88881.
    [17] SCHUSTER S, CABRERA D, ARRESE M, et al. Triggering and resolution of inflammation in NASH[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(6): 349-364. DOI: 10.1038/s41575-018-0009-6.
    [18] LEROUX A, FERRERE G, GODIE V, et al. Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis[J]. J Hepatol, 2012, 57(1): 141-149. DOI: 10.1016/j.jhep.2012.02.028.
    [19] WENFENG Z, YAKUN W, DI M, et al. Kupffer cells: increasingly significant role in nonalcoholic fatty liver disease[J]. Ann Hepatol, 2014, 13(5): 489-495.
    [20] KHOMICH O, IVANOV AV, BARTOSCH B. Metabolic hallmarks of hepatic stellate cells in liver fibrosis[J]. Cells, 2019, 9(1): 24. DOI: 10.3390/cells9010024.
    [21] BOUREBABA N, MARYCZ K. Hepatic stellate cells role in the course of metabolic disorders development-A molecular overview[J]. Pharmacol Res, 2021, 170: 105739. DOI: 10.1016/j.phrs.2021.105739.
    [22] MIYAO M, KOTANI H, ISHIDA T, et al. Pivotal role of liver sinusoidal endothelial cells in NAFLD/NASH progression[J]. Lab Invest, 2015, 95(10): 1130-1144. DOI: 10.1038/labinvest.2015.95.
    [23] MATSUMOTO M, ZHANG J, ZHANG X, et al. The NOX1 isoform of NADPH oxidase is involved in dysfunction of liver sinusoids in nonalcoholic fatty liver disease[J]. Free Radic Biol Med, 2018, 115: 412-420. DOI: 10.1016/j.freeradbiomed.2017.12.019.
    [24] NASIRI-ANSARI N, ANDROUTSAKOS T, FLESSA CM, et al. Endothelial cell dysfunction and nonalcoholic fatty liver disease (NAFLD): A concise review[J]. Cells, 2022, 11(16): 2511. DOI: 10.3390/cells11162511.
    [25] GENG Y, FABER KN, de MEIJER VE, et al. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease?[J]. Hepatol Int, 2021, 15(1): 21-35. DOI: 10.1007/s12072-020-10121-2.
    [26] HIRSOVA P, GORES GJ. Death receptor-mediated cell death and proinflammatory signaling in nonalcoholic steatohepatitis[J]. Cell Mol Gastroenterol Hepatol, 2015, 1(1): 17-27. DOI: 10.1016/j.jcmgh.2014.11.005.
    [27] MUSSO G, CASSADER M, PASCHETTA E, et al. Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic steatohepatitis[J]. Gastroenterology, 2018, 155(2): 282-302. e8. DOI: 10.1053/j.gastro.2018.06.031.
    [28] HETZ C, ZHANG K, KAUFMAN RJ. Mechanisms, regulation and functions of the unfolded protein response[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 421-438. DOI: 10.1038/s41580-020-0250-z.
    [29] MOTA M, BANINI BA, CAZANAVE SC, et al. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease[J]. Metabolism, 2016, 65(8): 1049-1061. DOI: 10.1016/j.metabol.2016.02.014.
    [30] SVEGLIATI-BARONI G, PIERANTONELLI I, TORQUATO P, et al. Lipidomic biomarkers and mechanisms of lipotoxicity in non-alcoholic fatty liver disease[J]. Free Radic Biol Med, 2019, 144: 293-309. DOI: 10.1016/j.freeradbiomed.2019.05.029.
    [31] HAUCK AK, BERNLOHR DA. Oxidative stress and lipotoxicity[J]. J Lipid Res, 2016, 57(11): 1976-1986. DOI: 10.1194/jlr.R066597.
    [32] XIAO M, ZHONG H, XIA L, et al. Pathophysiology of mitochondrial lipid oxidation: Role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria[J]. Free Radic Biol Med, 2017, 111: 316-327. DOI: 10.1016/j.freeradbiomed.2017.04.363.
    [33] SABIO G, DAVIS RJ. TNF and MAP kinase signalling pathways[J]. Semin Immunol, 2014, 26(3): 237-245. DOI: 10.1016/j.smim.2014.02.009.
    [34] YANG YM, KIM SY, SEKI E. Inflammation and liver cancer: molecular mechanisms and therapeutic targets[J]. Semin Liver Dis, 2019, 39(1): 26-42. DOI: 10.1055/s-0038-1676806.
    [35] CAZANAVE SC, MOTT JL, BRONK SF, et al. Death receptor 5 signaling promotes hepatocyte lipoapoptosis[J]. J Biol Chem, 2011, 286(45): 39336-39348. DOI: 10.1074/jbc.M111.280420.
    [36] MALHI H, GUICCIARDI ME, GORES GJ. Hepatocyte death: a clear and present danger[J]. Physiol Rev, 2010, 90(3): 1165-1194. DOI: 10.1152/physrev.00061.2009.
    [37] AKAZAWA Y, NAKAO K. To die or not to die: death signaling in nonalcoholic fatty liver disease[J]. J Gastroenterol, 2018, 53(8): 893-906. DOI: 10.1007/s00535-018-1451-5.
    [38] WANDRER F, LIEBIG S, MARHENKE S, et al. TNF-Receptor-1 inhibition reduces liver steatosis, hepatocellular injury and fibrosis in NAFLD mice[J]. Cell Death Dis, 2020, 11(3): 212. DOI: 10.1038/s41419-020-2411-6.
  • 加载中
计量
  • 文章访问数:  337
  • HTML全文浏览量:  378
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-22
  • 录用日期:  2022-11-29
  • 出版日期:  2023-07-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回