粪肠球菌在酒精性肝病中的研究进展
DOI: 10.3969/j.issn.1001-5256.2023.07.026
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:古镈源负责资料分析,撰写论文;肖胜友、刘琛参与文献收集与整理;程永浪负责论文修改;付文广负责拟定课题设计、写作思路,指导撰写文章并最后定稿。
-
摘要: 酒精性肝病(ALD)是世界范围内最常见的慢性肝病之一,包括脂肪变性、脂肪性肝炎、纤维化和肝硬化不同阶段。粪肠球菌是医院常见获得性感染菌群,对于酒精性肝炎患者预后具有重要影响。本篇综述重点介绍了ALD的发病因素和粪肠球菌的致病机理,总结了粪肠球菌在ALD中的研究进展,简述了临床上对于粪肠球菌感染的检测和治疗方法。由于临床上感染溶细胞性粪肠球菌的ALD患者死亡率极高,因此深入认识粪肠球菌成为当下重要问题。Abstract: Alcoholic liver disease (ALD) is one of the most common chronic liver diseases worldwide and includes the different stages of steatosis, steatohepatitis, fibrosis, and liver cirrhosis. Enterococcus faecalis is a common bacterium for nosocomial infection and has a significant impact on the prognosis of patients with alcoholic hepatitis. This review mainly introduces the pathogenesis of ALD and the pathogenic mechanism of E. faecalis, summarizes the research advances in E. faecalis in ALD, and briefly describes the detection and treatment methods for E. faecalis infection in clinical practice. Since there is an extremely high mortality rate in ALD patients with lytic E. faecalis infection, an in-depth understanding of E. faecalis has become an important issue nowadays.
-
[1] KIRPICH IA, WARNER DR, FENG W, et al. Mechanisms, biomarkers and targets for therapy in alcohol-associated liver injury: From genetics to nutrition: Summary of the ISBRA 2018 symposium[J]. Alcohol, 2020, 83: 105-114. DOI: 10.1016/j.alcohol.2019.05.004. [2] LIU SY, TSAI IT, HSU YC. Alcohol-related liver disease: Basic mechanisms and clinical perspectives[J]. Int J Mol Sci, 2021, 22(10): 5170. DOI: 10.3390/ijms22105170. [3] SZABO G, PETRASEK J. Gut-liver axis and sterile signals in the development of alcoholic liver disease[J]. Alcohol Alcohol, 2017, 52(4): 414-424. DOI: 10.1093/alcalc/agx025. [4] BLACHIER M, LELEU H, PECK-RADOSAVLJEVIC M, et al. The burden of liver disease in Europe: a review of available epidemiological data[J]. J Hepatol, 2013, 58(3): 593-608. DOI: 10.1016/j.jhep.2012.12.005. [5] REHM J, SAMOKHVALOV AV, SHIELD KD. Global burden of alcoholic liver diseases[J]. J Hepatol, 2013, 59(1): 160-168. DOI: 10.1016/j.jhep.2013.03.007. [6] SEITZ HK, BATALLER R, CORTEZ-PINTO H, et al. Alcoholic liver disease[J]. Nat Rev Dis Primers, 2018, 4(1): 16. DOI: 10.1038/s41572-018-0014-7. [7] van TYNE D, MARTIN MJ, GILMORE MS. Structure, function, and biology of the Enterococcus faecalis cytolysin[J]. Toxins (Basel), 2013, 5(5): 895-911. DOI: 10.3390/toxins5050895. [8] SZABO G. Gut-liver axis in alcoholic liver disease[J]. Gastroenterology, 2015, 148(1): 30-36. DOI: 10.1053/j.gastro.2014.10.042. [9] RAJENDRAM R, PREEDY VR. Effect of alcohol consumption on the gut[J]. Dig Dis, 2005, 23(3-4): 214-221. DOI: 10.1159/000090168. [10] MERONI M, LONGO M, DONGIOVANNI P. Alcohol or gut microbiota: Who is the guilty?[J]. Int J Mol Sci, 2019, 20(18). DOI: 10.3390/ijms20184568. [11] LLOPIS M, CASSARD AM, WRZOSEK L, et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease[J]. Gut, 2016, 65(5): 830-839. DOI: 10.1136/gutjnl-2015-310585. [12] SARIN SK, PANDE A, SCHNABL B. Microbiome as a therapeutic target in alcohol-related liver disease[J]. J Hepatol, 2019, 70(2): 260-272. DOI: 10.1016/j.jhep.2018.10.019. [13] YAN AW, FOUTS DE, BRANDL J, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease[J]. Hepatology, 2011, 53(1): 96-105. DOI: 10.1002/hep.24018. [14] IIDA N, MIZUKOSHI E, YAMASHITA T, et al. Chronic liver disease enables gut Enterococcus faecalis colonization to promote liver carcinogenesis[J]. Nat Cancer, 2021, 2(10): 1039-1054. DOI: 10.1038/s43018-021-00251-3. [15] SHOGAN BD, BELOGORTSEVA N, LUONG PM, et al. Collagen degradation and MMP9 activation by Enterococcus faecalis contribute to intestinal anastomotic leak[J]. Sci Transl Med, 2015, 7(286): 286ra68. DOI: 10.1126/scitranslmed.3010658. [16] CHEN L, ZHU Y, HOU X, et al. The role of gut bacteria and fungi in alcohol-associated liver disease[J]. Front Med (Lausanne), 2022, 9: 840752. DOI: 10.3389/fmed.2022.840752. [17] ARIAS CA, MURRAY BE. The rise of the Enterococcus: beyond vancomycin resistance[J]. Nat Rev Microbiol, 2012, 10(4): 266-278. DOI: 10.1038/nrmicro2761. [18] NUNEZ N, DERRÉ-BOBILLOT A, TRAINEL N, et al. The unforeseen intracellular lifestyle of Enterococcus faecalis in hepatocytes[J]. Gut Microbes, 2022, 14(1): 2058851. DOI: 10.1080/19490976.2022.2058851. [19] NUNEZ N, DERRÉ-BOBILLOT A, GAUBERT S, et al. Exploration of the role of the virulence factor ElrA during Enterococcus faecalis cell infection[J]. Sci Rep, 2018, 8(1): 1749. DOI: 10.1038/s41598-018-20206-6. [20] DUAN Y, LLORENTE C, LANG S, et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease[J]. Nature, 2019, 575(7783): 505-511. DOI: 10.1038/s41586-019-1742-x. [21] DAHL A, IVERSEN K, TONDER N, et al. Prevalence of infective endocarditis in Enterococcus faecalis bacteremia[J]. J Am Coll Cardiol, 2019, 74(2): 193-201. DOI: 10.1016/j.jacc.2019.04.059. [22] FLORES-MIRELES AL, WALKER JN, CAPARON M, et al. Urinary tract infections: epidemiology, mechanisms of infection and treatment options[J]. Nat Rev Microbiol, 2015, 13(5): 269-284. DOI: 10.1038/nrmicro3432. [23] PÖNTINEN AK, TOP J, ARREDONDO-ALONSO S, et al. Apparent nosocomial adaptation of Enterococcus faecalis predates the modern hospital era[J]. Nat Commun, 2021, 12(1): 1523. DOI: 10.1038/s41467-021-21749-5. [24] GARCÍA-SOLACHE M, RICE LB. The Enterococcus: a model of adaptability to its environment[J]. Clin Microbiol Rev, 2019, 32(2): e00058-18. DOI: 10.1128/CMR.00058-18. [25] MATAMOROS S, GRAS-LEGUEN C, LE VACON F, et al. Development of intestinal microbiota in infants and its impact on health[J]. Trends Microbiol, 2013, 21(4): 167-173. DOI: 10.1016/j.tim.2012.12.001. [26] PAULSEN IT, BANERJEI L, MYERS GS, et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis[J]. Science, 2003, 299(5615): 2071-2074. DOI: 10.1126/science.1080613. [27] HUYCKE MM, SPIEGEL CA, GILMORE MS. Bacteremia caused by hemolytic, high-level gentamicin-resistant Enterococcus faecalis[J]. Antimicrob Agents Chemother, 1991, 35(8): 1626-1634. DOI: 10.1128/AAC.35.8.1626. [28] GARSIN DA, SIFRI CD, MYLONAKIS E, et al. A simple model host for identifying Gram-positive virulence factors[J]. Proc Natl Acad Sci U S A, 2001, 98(19): 10892-10897. DOI: 10.1073/pnas.191378698. [29] CASTRO MS, MOLINA MA, AZPIROZ MB, et al. Probiotic activity of Enterococcus faecalis CECT7121: effects on mucosal immunity and intestinal epithelial cells[J]. J Appl Microbiol, 2016, 121(4): 1117-1129. DOI: 10.1111/jam.13226. [30] MIYAZAKI S, OHNO A, KOBAYASHI I, et al. Cytotoxic effect of hemolytic culture supernatant from Enterococcus faecalis on mouse polymorphonuclear neutrophils and macrophages[J]. Microbiol Immunol, 1993, 37(4): 265-270. DOI: 10.1111/j.1348-0421.1993.tb03209.x. [31] THURLOW LR, THOMAS VC, FLEMING SD, et al. Enterococcus faecalis capsular polysaccharide serotypes C and D and their contributions to host innate 8 immune evasion[J]. Infect Immun, 2009, 77(12): 5551-5557. DOI: 10.1128/IAI.00576-09. [32] GENTRY-WEEKS CR, KARKHOFF-SCHWEIZER R, PIKIS A, et al. Survival of Enterococcus faecalis in mouse peritoneal macrophages[J]. Infect Immun, 1999, 67(5): 2160-2165. DOI: 10.1128/IAI.67.5.2160-2165.1999. [33] WELLS CL, JECHOREK RP, ERLANDSEN SL. Evidence for the translocation of Enterococcus faecalis across the mouse intestinal tract[J]. J Infect Dis, 1990, 162(1): 82-90. DOI: 10.1093/infdis/162.1.82. [34] FIORE E, van TYNE D, GILMORE MS. Pathogenicity of Enterococci[J]. Microbiol Spectr, 2019, 7(4): 10. DOI: 10.1128/microbiolspec.GPP3-0053-2018. [35] PHAM TA, CLARE S, GOULDING D, et al. Epithelial IL- 22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen[J]. Cell Host Microbe, 2014, 16(4): 504-516. DOI: 10.1016/j.chom.2014.08.017. [36] ALI YM, SIM RB, SCHWAEBLE W, et al. Enterococcus faecalis escapes complement-mediated killing via recruitment of complement factor H[J]. J Infect Dis, 2019, 220(6): 1061-1070. DOI: 10.1093/infdis/jiz226. [37] ROH YS, ZHANG B, LOOMBA R, et al. TLR2 and TLR9 contribute to alcohol-mediated liver injury through induction of CXCL1 and neutrophil infiltration[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 309(1): G30-41. DOI: 10.1152/ajpgi.00031.2015. [38] KUSUMANCHI P, LIANG T, ZHANG T, et al. Stress-responsive gene FK506-binding protein 51 mediates alcohol-induced liver injury through the hippo pathway and chemokine (C-X-C Motif) ligand 1 signaling[J]. Hepatology, 2021, 74(3): 1234-1250. DOI: 10.1002/hep.31800. [39] JIANG Y, XI Y, LI Y, et al. Ethanol promoting the upregulation of C-X-C Motif Chemokine Ligand 1(CXCL1) and C-X-C Motif Chemokine Ligand 6(CXCL6) in models of early alcoholic liver disease[J]. Bioengineered, 2022, 13(3): 4688-4701. DOI: 10.1080/21655979.2022.2030557. [40] ELSNER HA, SOBOTTKA I, MACK D, et al. Virulence factors of Enterococcus faecalis and Enterococcus faecium blood culture isolates[J]. Eur J Clin Microbiol Infect Dis, 2000, 19(1): 39-42. DOI: 10.1007/s100960050007. [41] NAZARI-VANANI R, SATTARAHMADY N, YADEGARI H, et al. Electrochemical biosensing of 16s rRNA gene sequence of Enterococcus faecalis[J]. Biosens Bioelectron, 2019, 142: 111541. DOI: 10.1016/j.bios.2019.111541. [42] ABKAR M, ALAMIAN S, SATTARAHMADY N. A comparison between adjuvant and delivering functions of calcium phosphate, aluminum hydroxide and chitosan nanoparticles, using a model protein of Brucella melitensis Omp31[J]. Immunol Lett, 2019, 207: 28-35. DOI: 10.1016/j.imlet.2019.01.010. [43] LANG S, DEMIR M, DUAN Y, et al. Cytolysin-positive Enterococcus faecalis is not increased in patients with non-alcoholic steatohepatitis[J]. Liver Int, 2020, 40(4): 860-865. DOI: 10.1111/liv.14377. [44] PALMER KL, GILMORE MS. Multidrug-resistant enterococci lack CRISPR-cas[J]. mBio, 2010, 1(4): e00227-10. DOI: 10.1128/mBio.00227-10. [45] PERICAS JM, CERVERA C, DEL RIO A, et al. Changes in the treatment of Enterococcus faecalis infective endocarditis in Spain in the last 15 years: from ampicillin plus gentamicin to ampicillin plus ceftriaxone[J]. Clin Microbiol Infect, 2014, 20(12): 1075-1083. DOI: 10.1111/1469-0691.12756. [46] JONES BM, KEEDY C, WYNN M. Successful treatment of Enterococcus faecalis bacteremia with dalbavancin as an outpatient in an intravenous drug user[J]. Int J Infect Dis, 2018, 76: 4-5. DOI: 10.1016/j.ijid.2018.07.016. [47] ONYEJI CO, BUI KQ, NICOLAU DP, et al. Influence of adjunctive interferon-gamma on treatment of gentamicin- and vancomycin-resistant Enterococcus faecalis infection in mice[J]. Int J Antimicrob Agents, 1999, 12(4): 301-309. DOI: 10.1016/s0924-8579(99)00055-2. [48] BAI B, WEN Z, LIN Z, et al. 1456. resistance mechanisms of tigecycline in Enterococcus faecalis[J]. Open Forum Inf Dis, 2020, 7(Supplement_1): S730-S731. DOI: 10.1093/ofid/ofaa439.1637. [49] DEDRICK RM, GUERRERO-BUSTAMANTE CA, GARLENA RA, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus[J]. Nat Med, 2019, 25(5): 730-733. DOI: 10.1038/s41591-019-0437-z. [50] TATTA ER, KUMAVATH R. Rhodethrin and Rubrivivaxin as potential source of anti-biofilm agents against vancomycin resistant Enterococcus faecalis (ATCC 19443)[J]. Microb Pathog, 2020, 148: 104457. DOI: 10.1016/j.micpath.2020.104457. [51] BOCH T, TENNERT C, VACH K, et al. Effect of gaseous ozone on Enterococcus faecalis biofilm-an in vitro study[J]. Clin Oral Investig, 2016, 20(7): 1733-1739. DOI: 10.1007/s00784-015-1667-1. [52] JAVIDI M, ZAREI M, AFKHAMI F. Antibacterial effect of calcium hydroxide on intraluminal and intratubular Enterococcus faecalis[J]. Iran Endod J, 2011, 6(3): 103-106.
本文二维码
计量
- 文章访问数: 387
- HTML全文浏览量: 255
- PDF下载量: 37
- 被引次数: 0