中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结直肠癌肿瘤相关成纤维细胞对免疫治疗和肝转移的影响

王晓庆 龙杰 王菲 廉哲雄

引用本文:
Citation:

结直肠癌肿瘤相关成纤维细胞对免疫治疗和肝转移的影响

DOI: 10.12449/JCH240618
基金项目: 

国家自然科学基金青年科学基金 (82303785);

国家自然科学基金青年科学基金 (32100720)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:王晓庆主要负责文章实验开展,数据分析,论文撰写;龙杰负责文章指导,数据分析,论文修改;王菲负责文章指导,论文修改;廉哲雄负责文章指导并最终定稿。
详细信息
    通信作者:

    廉哲雄, zxlian@gdph.org.cn (ORCID: 0000-0002-9525-1421)

Impact of cancer-associated fibroblasts on immunotherapy and liver metastasis in colorectal cancer

Research funding: 

Young Scientists Fund of the National Natural Science Foundation of China (82303785);

Young Scientists Fund of the National Natural Science Foundation of China (32100720)

More Information
    Corresponding author: LIAN Zhexiong, zxlian@gdph.org.cn (ORCID: 0000-0002-9525-1421)
  • 摘要:   目的  探讨结直肠癌(CRC)中肿瘤相关成纤维细胞(CAF)对免疫治疗和肝转移的影响。  方法  从基因表达数据库(GEO)中下载错配修复缺陷(MMRd)的CRC患者相关的单细胞测序数据(GSE205506),利用R软件对原始测序数据进行预处理,建立CAF亚群降维图,并根据每个亚群的标志性基因对亚群进行命名,使用GraphPad对每种亚群的比例进行统计,分析CRC患者在程序性死亡受体1(PD-1)免疫治疗前后以及治疗后病理完全缓解(pCR)与病理未完全缓解(non-pCR)患者中具有明显差异的关键亚群,对关键亚群进行差异基因分析和基因通路富集分析,利用肿瘤基因组图谱(TCGA)数据库对关键CAF亚群的标志性基因进行预后生存分析,通过RNA测序数据对CRC肝转移患者原发灶中关键CAF亚群进行评分和比例计算。符合正态分布的计量资料两组间比较采用成组t检验,Kaplan-Meier法绘制生存曲线,Log-rank检验比较生存率。利用CellPhoneDB软件分析成纤维细胞亚群与肿瘤细胞间的受配体相互作用,并通过体外细胞实验验证关键配体分子NRG1对CRC细胞迁移侵袭能力的影响。  结果  CRC患者经过PD-1免疫治疗后,F6_MMP1+CAF比例减少(P<0.001),但这种减少只发生在免疫治疗后完全缓解的患者中,F6_MMP1+CAF与肿瘤迁移和侵袭相关的基因及信号通路表达上调,此外,F6_MMP1+CAF在CRC肝转移患者肿瘤组织中明显增多(P<0.000 1)。F6_MMP1+CAF表达的NRG1作为配体与肿瘤细胞表达的ERBB3受体相互作用,体外实验证明NRG1通过激活ERBB信号通路促进肿瘤细胞的迁移和侵袭(P<0.05)。  结论  F6_MMP1+CAF可能影响CRC患者PD-1免疫治疗的效果,并在促进CRC发生肝转移过程中发挥重要作用,F6_MMP1+CAF及产生的促肿瘤转移的NRG1或许可以作为潜在的CRC治疗靶点及预后标志物。

     

  • 图  1  F6_MMP1+CAF影响免疫治疗的效果

    注: a,CRC成纤维细胞降维图; b,PD-1免疫治疗前后CAF亚群降维图;c,各亚群标志性基因展示;d,PD-1免疫治疗前后各CAF亚群所占比例;e,未治疗和治疗后完全缓解以及不完全缓解组中各CAF亚群所占比例。

    Figure  1.  F6_MMP1+CAFs influence response to immunotherapy

    图  2  F6_MMP1+CAF与患者预后不良及肿瘤发展有关

    注: a,火山图展示F6_MMP1+CAF和其他CAF差异基因;b,CRC患者中表达MMP1、MMP3、WNT5A基因评分高低与患者总体生存率的关系;c,各CAF亚群与肿瘤细胞配受体相互作用分析;d,各CAF亚群基因通路富集展示。

    Figure  2.  F6_MMP1+CAFs are associated with poor prognosis and tumor progression

    图  3  F6_MMP1+CAF可能与CRC发生肝转移过程密切相关

    注: a,F6_MMP1高表达基因展示图;b,RNA测序数据库GSE49355中CRC肝转移患者肠道正常组织和原发灶肿瘤组织中F6_MMP1评分和比例配对统计,CLMN:CRC肝转移患者肠道正常组织,CLMT:CRC肝转移患者肠道肿瘤组织;c,RNA测序数据库GSE50760中CRC肝转移患者正常组织和原发灶肿瘤组织中F6_MMP1评分和比例配对统计;d,RNA测序数据库GSE81558和GSE68468中CRC肝转移患者正常组织和原发灶肿瘤组织中F6_MMP1评分统计。

    Figure  3.  F6_MMP1+CAFs may be related to the liver metastasis of CRC

    图  4  F6_MMP1+CAF表达的NRG1激活ERBB通路促进CRC的迁移和侵袭

    注: a、b,Transwell实验证明NRG1对CACO2迁移和侵袭能力的影响(×40);c、d,划痕实验证明NRG1通过结合ERBB3发挥作用。

    Figure  4.  NRG1 expressed by F6_MMP1+CAFs activates ERBBs pathway and promotes CRC migration and invasion

  • [1] DEKKER E, TANIS PJ, VLEUGELS JLA, et al. Colorectal cancer[J]. Lancet, 2019, 394( 10207): 1467- 1480. DOI: 10.1016/S0140-6736(19)32319-0.
    [2] HUANG XY, SHI GM, ZHOU J. Opportunities and challenges for the treatment of malignant hepatobiliary tumors in the new era of immunotherapy[J]. J Clin Hepatol, 2022, 38( 5): 977- 979. DOI: 10.3969/j.issn.1001-5256.2022.05.001.

    黄晓勇, 施国明, 周俭. 免疫治疗新时代下肝胆恶性肿瘤治疗的机遇和挑战[J]. 临床肝胆病杂志, 2022, 38( 5): 977- 979. DOI: 10.3969/j.issn.1001-5256.2022.05.001.
    [3] LE DT, URAM JN, WANG H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. N Engl J Med, 2015, 372( 26): 2509- 2520. DOI: 10.1056/NEJMoa1500596.
    [4] ZHOU H, LIU ZT, WANG YX, et al. Colorectal liver metastasis: Molecular mechanism and interventional therapy[J]. Signal Transduct Target Ther, 2022, 7( 1): 70. DOI: 10.1038/s41392-022-00922-2.
    [5] MAO XQ, XU J, WANG W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives[J]. Mol Cancer, 2021, 20( 1): 131. DOI: 10.1186/s12943-021-01428-1.
    [6] LI C, TEIXEIRA AF, ZHU HJ, et al. Cancer associated-fibroblast-derived exosomes in cancer progression[J]. Mol Cancer, 2021, 20( 1): 154. DOI: 10.1186/s12943-021-01463-y.
    [7] MANTOVANI A, MARCHESI F, JAILLON S, et al. Tumor-associated myeloid cells: Diversity and therapeutic targeting[J]. Cell Mol Immunol, 2021, 18( 3): 566- 578. DOI: 10.1038/s41423-020-00613-4.
    [8] TANAKA R, KIMURA K, EGUCHI S, et al. Interleukin-8 produced from cancer-associated fibroblasts suppresses proliferation of the OCUCh-LM1 cancer cell line[J]. BMC Cancer, 2022, 22( 1): 748. DOI: 10.1186/s12885-022-09847-z.
    [9] BARRETT T, WILHITE SE, LEDOUX P, et al. NCBI GEO: Archive for functional genomics data sets: Update[J]. Nucleic Acids Res, 2013, 41( Database issue): D991- D995. DOI: 10.1093/nar/gks1193.
    [10] LI JX, WU C, HU HB, et al. Remodeling of the immune and stromal cell compartment by PD-1 blockade in mismatch repair-deficient colorectal cancer[J]. Cancer Cell, 2023, 41( 6): 1152- 1169. e 7. DOI: 10.1016/j.ccell.2023.04.011.
    [11] FOLEY CJ, LUO C, O'CALLAGHAN K, et al. Matrix metalloprotease-1a promotes tumorigenesis and metastasis[J]. J Biol Chem, 2012, 287( 29): 24330- 24338. DOI: 10.1074/jbc.M112.356303.
    [12] WAN XY, GUAN SD, HOU YX, et al. FOSL2 promotes VEGF-independent angiogenesis by transcriptionnally activating Wnt5a in breast cancer-associated fibroblasts[J]. Theranostics, 2021, 11( 10): 4975- 4991. DOI: 10.7150/thno.55074.
    [13] MA ZK, LI XD, MAO YZ, et al. Interferon-dependent SLC14A1+ cancer-associated fibroblasts promote cancer stemness via WNT5A in bladder cancer[J]. Cancer Cell, 2022, 40( 12): 1550- 1565. e 7. DOI: 10.1016/j.ccell.2022.11.005.
    [14] KUMAR V, RAMNARAYANAN K, SUNDAR R, et al. Single-cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer[J]. Cancer Discov, 2022, 12( 3): 670- 691. DOI: 10.1158/2159-8290.CD-21-0683.
    [15] DONATO C, KUNZ L, CASTRO-GINER F, et al. Hypoxia triggers the intravasation of clustered circulating tumor cells[J]. Cell Rep, 2020, 32( 10): 108105. DOI: 10.1016/j.celrep.2020.108105.
    [16] LEQUEUX A, NOMAN MZ, XIAO M, et al. Targeting HIF-1 alpha transcriptional activity drives cytotoxic immune effector cells into melanoma and improves combination immunotherapy[J]. Oncogene, 2021, 40( 28): 4725- 4735. DOI: 10.1038/s41388-021-01846-x.
    [17] ZHONG BP, CHENG B, HUANG XM, et al. Colorectal cancer-associated fibroblasts promote metastasis by up-regulating LRG1 through stromal IL-6/STAT3 signaling[J]. Cell Death Dis, 2021, 13( 1): 16. DOI: 10.1038/s41419-021-04461-6.
    [18] KALLURI R. The biology and function of fibroblasts in cancer[J]. Nat Rev Cancer, 2016, 16( 9): 582- 598. DOI: 10.1038/nrc.2016.73.
    [19] LI XQ, XU K. Mechanism of cancer-associated fibroblasts promoting tumor metastasis and invasion[J]. Chin J Biochem Mol Biol, 2019, 35( 4): 386- 392. DOI: 10.13865/j.cnki.cjbmb.2019.04.06.

    李学勤, 徐克. 肿瘤相关成纤维细胞促进肿瘤侵袭转移的作用机制[J]. 中国生物化学与分子生物学报, 2019, 35( 4): 386- 392. DOI: 10.13865/j.cnki.cjbmb.2019.04.06.
    [20] ZHANG W, WANG HS, SUN MY, et al. CXCL5/CXCR2 axis in tumor microenvironment as potential diagnostic biomarker and therapeutic target[J]. Cancer Commun, 2020, 40( 2-3): 69- 80. DOI: 10.1002/cac2.12010.
    [21] ZHOU SL, DAI Z, ZHOU ZJ, et al. Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma[J]. Hepatology, 2012, 56( 6): 2242- 2254. DOI: 10.1002/hep.25907.
    [22] ZHAO JK, OU BC, HAN DP, et al. Tumor-derived CXCL5 promotes human colorectal cancer metastasis through activation of the ERK/Elk-1/Snail and AKT/GSK3β/β-catenin pathways[J]. Mol Cancer, 2017, 16( 1): 70. DOI: 10.1186/s12943-017-0629-4.
    [23] SUN XT, HE XK, ZHANG Y, et al. Inflammatory cell-derived CXCL3 promotes pancreatic cancer metastasis through a novel myofibroblast-hijacked cancer escape mechanism[J]. Gut, 2022, 71( 1): 129- 147. DOI: 10.1136/gutjnl-2020-322744.
    [24] XIONG XY, LIAO XY, QIU S, et al. CXCL8 in tumor biology and its implications for clinical translation[J]. Front Mol Biosci, 2022, 9: 723846. DOI: 10.3389/fmolb.2022.723846.
    [25] JONES SA, JENKINS BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer[J]. Nat Rev Immunol, 2018, 18( 12): 773- 789. DOI: 10.1038/s41577-018-0066-7.
    [26] MCANDREWS KM, CHEN Y, DARPOLOR JK, et al. Identification of functional heterogeneity of carcinoma-associated fibroblasts with distinct IL6-mediated therapy resistance in pancreatic cancer[J]. Cancer Discov, 2022, 12( 6): 1580- 1597. DOI: 10.1158/2159-8290.CD-20-1484.
    [27] HAN Y, ZHANG YY, PAN YQ, et al. IL-1β-associated NNT acetylation orchestrates iron-sulfur cluster maintenance and cancer immunotherapy resistance[J]. Mol Cell, 2023, 83( 11): 1887- 1902. e 8. DOI: 10.1016/j.molcel.2023.05.011.
    [28] ZHANG ZD, KARTHAUS WR, LEE YS, et al. Tumor microenvironment-derived NRG1 promotes antiandrogen resistance in prostate cancer[J]. Cancer Cell, 2020, 38( 2): 279- 296. e 9. DOI: 10.1016/j.ccell.2020.06.005.
    [29] WEI DY, GENG F, LIANG SM, et al. CAF-derived HGF promotes cell proliferation and drug resistance by up-regulating the c-Met/PI3K/Akt and GRP78 signalling in ovarian cancer cells[J]. Biosci Rep, 2017, 37( 2): BSR20160470. DOI: 10.1042/BSR20160470.
    [30] XU QX, CHIAO P, SUN Y. Amphiregulin in cancer: New insights for translational medicine[J]. Trends Cancer, 2016, 2( 3): 111- 113. DOI: 10.1016/j.trecan.2016.02.002.
    [31] EREZ N, TRUITT M, OLSON P, et al. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner[J]. Cancer Cell, 2010, 17( 2): 135- 147. DOI: 10.1016/j.ccr.2009.12.041.
    [32] QI JJ, SUN HX, ZHANG Y, et al. Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer[J]. Nat Commun, 2022, 13( 1): 1742. DOI: 10.1038/s41467-022-29366-6.
  • 加载中
图(4)
计量
  • 文章访问数:  477
  • HTML全文浏览量:  235
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-27
  • 录用日期:  2024-01-19
  • 出版日期:  2024-06-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回