中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

T淋巴细胞免疫球蛋白黏蛋白分子3在肝脏疾病发生发展中的作用

袁诗雨 杨焕焕 唐映梅

李守娟, 王丽, 周明, 等 . 经选择性血浆分离器行人工肝治疗低血小板计数慢加急性肝衰竭患者的效果及安全性分析[J]. 临床肝胆病杂志, 2024, 40(6): 1191-1195. DOI: 10.12449/JCH240619.
引用本文: 李守娟, 王丽, 周明, 等 . 经选择性血浆分离器行人工肝治疗低血小板计数慢加急性肝衰竭患者的效果及安全性分析[J]. 临床肝胆病杂志, 2024, 40(6): 1191-1195. DOI: 10.12449/JCH240619.
LI SJ, WANG L, ZHOU M, et al. Efficacy and safety of artificial liver support therapy with a selective plasma separator in low-platelet count patients with acute-on-chronic liver failure[J]. J Clin Hepatol, 2024, 40(6): 1191-1195. DOI: 10.12449/JCH240619.
Citation: LI SJ, WANG L, ZHOU M, et al. Efficacy and safety of artificial liver support therapy with a selective plasma separator in low-platelet count patients with acute-on-chronic liver failure[J]. J Clin Hepatol, 2024, 40(6): 1191-1195. DOI: 10.12449/JCH240619.

T淋巴细胞免疫球蛋白黏蛋白分子3在肝脏疾病发生发展中的作用

DOI: 10.12449/JCH240632
基金项目: 

国家自然科学基金 (82360108);

云南省医学领军人才项目 (L-2019013);

云南万人计划 (YNWR-MY-2018-028);

中国联合肝脏健康促进中心-戊型肝炎防治专项基金 (CLH2023-F-HEV-08);

云南省科技人才与平台计划 (Academician Expert Workstation 202305AF150065);

昆明医科大学第二附属医院临床研究项目 (2020ynlc010);

昆明医科大学第二附属医院临床研究项目 (ynIIT2021017)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:袁诗雨负责文献阅读分析,拟定写作思路,撰写论文;杨焕焕参与修改论文;唐映梅负责指导撰写文章并最后定稿。
详细信息
    通信作者:

    唐映梅, tangyingmei_med@kmmu.edu.cn (ORCID: 0000-0002-0731-4198)

Role of T-cell immunoglobulin and mucin domain-containing molecule 3 in the development and progression of liver diseases

Research funding: 

National Natural Science Foundation of China (82360108);

Yunnan Medical Leading Talent Project (L-2019013);

Yunnan Ten Thousand Talents Project (YNWR-MY-2018-028);

China United Liver Health Promotion Center - Special Fund for Hepatitis E Prevention and Treatment (CLH2023-F-HEV-08);

Yunnan Provincial Science and Technology Talent and Platform Program (Academician Expert Workstation 202305AF150065);

Clinical Research Project of the Second Affiliated Hospital of Kunming Medical University (2020ynlc010);

Clinical Research Project of the Second Affiliated Hospital of Kunming Medical University (ynIIT2021017)

More Information
  • 摘要: T淋巴细胞免疫球蛋白黏蛋白分子3(Tim-3)是Tim家族中的一员,为近年来研究热点。Tim-3作为负性调节因子通过与不同配体结合发挥不同效应。多种免疫细胞可表达Tim-3,如自然杀伤细胞、树突状细胞和单核细胞,Tim-3对这些免疫细胞功能具有调控作用。近年来大量研究显示Tim-3与肝脏疾病发生发展有着密切关系。本文回顾了近几年Tim-3在不同肝脏疾病及不同细胞中作用及机制的研究,旨在为肝脏疾病的临床诊疗提供更丰富的视角及思路。

     

  • 慢加急性肝衰竭(acute-on-chronic liver failure,ACLF)是在慢性肝病(包括慢性肝炎或肝硬化)基础上因各种诱因引起的急性肝衰竭,病情进展快,病死率达60%~80%。肝移植是挽救ACLF患者的最终手段,然而由于治疗费用高、供体肝脏少、技术难度较大等问题使其极大程度地受到了限制。近年来,人工肝治疗技术发展迅速,临床疗效肯定。大量研究1-3证明人工肝是治疗ACLF的有效措施。但血液通过管路和血浆分离器时血细胞的成分有一定的破坏,当血小板过低时,有增加出血的危险,在一定程度上限制了人工肝的治疗。由乙烯和乙烯醇共聚物制备的Evacure-4A膜型血浆分离器由于截孔面积小,膜交换面积大,组织相容性好,可以耐受高达250 mmHg的跨膜压,且随物质分子量的加大而筛选系数越来越低,因此血液通过时对血细胞的影响较小。叶俊茂等4研究表明,使用Evacure-4A膜型血浆分离器进行血浆置换治疗慢性重型肝炎伴严重血小板减少患者是安全的。本研究通过对不同分层血小板计数ACLF患者据病情选择不同模式非生物型人工肝治疗,观察其疗效及安全性。

    选取2021年1月—2023年5月入住本院的ACLF患者,根据血小板计数将其分为3组:A组(明显低下组),25×109/L~50×109/L;B组(中等程度低下组),51×109/L~80×109/L;C组(轻度低下组),81×109/L~100×109/L。纳入标准:ACLF诊断符合《肝衰竭诊治指南(2018年版)》5。排除标准:(1)合并肿瘤、妊娠、原发性心源性休克、原发性肾衰竭且规律透析、肝移植患者;(2)血小板计数<25×109/L的患者;(3)活动性出血的患者;(4)合并血液系统恶性病的患者,如血液肿瘤、骨髓抑制;使用具有明确骨髓抑制药物的患者;(5)入院前至住院1周有明确出血的患者;(6)近期有使用抗血小板药物的患者;(7)既往接受过脾脏切除术的患者;(8)不愿参加本研究者。

    1.2.1   内科综合治疗

    包括卧床休息,静脉滴注多烯磷脂酰胆碱、丁二磺酸腺苷蛋氨酸、复方甘草酸苷等保肝及人血白蛋白等支持治疗,乙型肝炎有抗病毒治疗指征者加用恩替卡韦或富马酸替诺福韦二吡呋酯或富马酸丙酚替诺福韦,同时依据病情联合不同模式人工肝治疗。

    1.2.2   人工肝支持治疗

    在持续空气消毒的人工肝治疗室内,心电监护下行股静脉穿刺置入股静脉双腔管建立体外循环,治疗过程中使用低分子肝素抗凝,根据患者凝血时间、体质量、跨膜压、分浆流速及治疗时间调整其剂量,使用Evacure-4A膜型选择性血浆分离器(旭化成医疗株式会社,日本)。治疗方式包括:血浆灌流联合血浆置换(plasma perfusion combined with plasma exchange,PP+PE)、胆红素吸附联合血浆置换(plasma bilirubin adsorption combined with plasma exchange,PBA+PE)、双重血浆分子吸附联合血浆置换(double plasma molecular adsorption combined with plasma exchange,DPMAS+PE):使用德国贝朗Dia Pact CRRT机,采用BS330血浆胆红素吸附器(珠海健帆生物科技股份有限公司)和大分子树脂HA-330 Ⅱ型灌流器(广东丽珠医用生物),治疗过程血流量100~130 mL/min,时间2~3 h6,每次置换血浆量1 500 mL7,在置换血浆前常规应用10%葡萄糖酸钙3 g及地塞米松5 mg静注,预防过敏等不良反应。

    人工肝治疗前后患者临床症状、体征、肝功能、国际标准化比值(INR)、血小板计数,相关检验数据系人工肝后立即采集。采用Labospect 008全自动生化分析仪和迈克生物生化试剂检测肝功能各项指标,包括ALT、AST、Alb、TBil;INR由Sysmex CS-2000血凝仪及武汉中太生物技术有限公司血凝试剂进行检测;血小板计数由Sysmex XF-2000检测。记录治疗过程中的不良反应。

    采用SPSS 19.0软件对数据进行统计分析。符合正态分布的计量资料以x¯±s表示,不符合正态分布的计量资料均经对数转换成正态分布。各组治疗前后比较采用配对t检验。多组间比较采用方差分析,进一步两两比较采用SNK-q检验。计数资料多组间比较采用χ2检验。P<0.05为差异有统计学意义。

    共纳入行人工肝治疗的ACLF患者302例,其中男236例(78.15%),女66例(21.85%),年龄24~87岁,中位年龄51.3岁。A组101例,男82例、女19例,平均年龄(51.75±11.38)岁;B组98例,男75例、女23例,平均年龄(51.53±10.96)岁;C组103例,男81例、女22例,平均年龄(50.72±12.49)岁。3组患者一般资料比较,年龄、性别、治疗前各组INR、Alb差异均无统计学意义(P值均>0.05)(表1)。

    表  1  血小板计数不同分层ACLF患者的一般资料比较
    Table  1.  Comparison of general data of ACLF patients with different levels of platelet count
    组别 例数 男/女(例) 年龄(岁) INR Alb(g/L)
    A组 101 82/19 51.75±11.38 2.11±0.71 27.79±3.76
    B组 98 75/23 51.53±10.96 1.98±0.46 28.79±3.61
    C组 103 81/22 50.72±12.49 2.11±0.77 28.97±3.59
    统计值 χ 2=0.649 F=0.223 F=1.221 F=3.058
    P 0.723 0.804 0.361 0.060
    下载: 导出CSV 
    | 显示表格

    302例ACLF患者治疗后有268例临床症状呈不同程度的改善,表现为精神好转,乏力减轻,食欲增加,腹胀缓解,未见明显出血倾向。各组治疗前后比较ALT、AST、TBil呈不同程度下降,肝功能好转(P值均<0.001)。INR呈不同程度降低,各组治疗前后比较,差异亦有统计学意义(P值均<0.05)。血小板计数呈不同程度的下降,但A组治疗前后无统计学差异(P>0.05)(表2)。

    表  2  血小板计数不同分层ACLF患者人工肝治疗前后肝功能、凝血、血小板变化
    Table  2.  Changes of liver function, blood coagulation and platelet count in patients with ACLF before and after artificial liver treatment
    分组 例数 ALT(U/L) AST(U/L) Alb(g/L) TBil(μmol/L) INR 血小板计数(×109/L)
    A组 101
    治疗前 1.97±0.34 2.05±0.33 27.79±3.76 322.30±149.56 2.11±0.71 37.73±6.27
    治疗后 1.78±0.28 1.88±0.31 25.71±2.79 197.25±103.20 1.91±0.66 36.59±7.96
    t 14.755 11.491 9.650 19.182 3.497 1.820
    P <0.001 <0.001 <0.001 <0.001 0.001 0.072
    B组 98
    治疗前 2.06±0.43 2.09±0.37 28.79±3.61 262.28±113.56 1.98±0.46 66.97±7.64
    治疗后 1.87±0.38 1.90±0.32 25.78±3.89 159.23±78.79 1.86±0.56 62.59±7.37
    t 21.614 19.301 7.878 17.486 3.327 12.993
    P <0.001 <0.001 <0.001 <0.001 0.001 <0.001
    C组 103
    治疗前 2.37±0.50 2.31±0.44 28.97±3.59 311.16±128.73 2.11±0.77 93.82±5.38
    治疗后 2.11±0.44 2.07±0.36 26.26±3.27 183.96±96.01 1.89±0.80 85.99±12.49
    t 15.965 13.919 8.045 21.750 4.358 8.240
    P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
    下载: 导出CSV 
    | 显示表格

    A、B、C组行PP+PE患者分别为40例(40%)、44例(45%)、41例(40%);行DPMAS+PE患者分别为32例(32%)、30例(31%)、35例(34%);行PBA+PE患者分别为29例(28%)、24例(24%)、27例(26%)。3组ACLF患者人工肝治疗模式各组间比较差异无统计学意义(χ2=0.957,P=0.916)。

    ACLF患者人工肝治疗中最常见的不良反应为血浆过敏,发生率15.23%(46/302),较少见的不良反应为凝血,发生率0.66%(2/302),其余不良反应为低血压4.64%(14/302)、畏寒寒战0.99%(3/302)。3组患者发生不良反应分别有19例、21例、25例,发生率比较差异无统计学意义(18.81% vs 21.43% vs 24.27%,χ2=0.901,P=0.637)。

    肝脏具有合成、代谢、解毒和生物转化功能,在维持人体正常凝血功能中具有重要作用。肝脏受损时,会导致凝血因子合成减少或其活性降低,进而伴随凝血机制和纤溶功能异常,表现为多种凝血功能障碍,INR也会相应的延长。当前,ACLF是一种无法完全治愈的综合征。具有发病率高、发病机制复杂、治疗难度大、预后极差等特点8。治疗的关键是早期诊断、积极预防、控制疾病诱因。治疗的主要原则是提供衰竭器官的功能支持、促进肝功能恢复。人工肝是目前其他方案无法替代的治疗手段9-10,已被纳入肝衰竭治疗的指南中。血清TBil是反映肝功能损害严重程度的可靠指标,INR是肝衰竭早期预警和病情进展的敏感指标,与患者预后显著相关11-13。杨景毅等14研究表明INR和TBil是影响ACLF患者预后的独立危险因素。本研究结果显示:3组患者治疗前TBil分别由(322.30±149.56)μmol/L、(262.28±113.56)μmol/L、(311.16±128.73)μmol/L下降至治疗后(197.25±103.20)μmol/L、(159.23±78.79)μmol/L、(183.96±96.01)μmol/L,ALT、AST亦呈不同程度下降,肝功能好转,INR分别由治疗前2.11±0.71、1.98±0.46、2.11±0.77降至治疗后1.91±0.66、1.86±0.56、1.89±0.80,且均有统计学差异(P值均<0.05)。说明人工肝治疗能改善ACLF患者的肝功能及INR。3组治疗后约88.74%患者乏力、腹胀等临床症状呈不同程度的改善。在前期的临床研究715-16中,使用不同模式人工肝治疗重型肝炎亦取得了较好的临床效果,包括肝功能好转、凝血功能改善、临床症状减轻。

    ACLF的发病机制尚不明确,近年来大量研究证据表明全身炎症反应是驱动肝病进展的重要因素。Moreau等17研究显示,ACLF患者体内白细胞和急性反应时相蛋白水平更高;Clària等18研究表明,ACLF患者比非ACLF患者有着更高的炎症相关细胞因子和全身氧化应激标志物。人工肝支持系统的主要作用是为患者提供暂时的代谢支持,清除血液中过多的胆红素、内毒素、致炎因子等,维持内环境的稳定,为肝细胞再生创造条件。其原理是将患者的血液引出,通过膜型血浆分离器将血液的有形成分(血细胞)和血浆分离,分离出的血浆按20%~30%的比例丢弃,再补充等量正常人的新鲜血浆并和患者的血细胞混合后由静脉输入,形成循环回路。由于血浆分离的效果受膜的性质、血浆成分、血流量、跨膜压及滤过分数的影响,故选用制膜材料和制膜工艺不同的膜型血浆分离器,所带来的临床效果也不尽相同。如使用聚乙烯磺基制备的Plasman 06膜型血浆分离器进行血浆置换治疗,治疗后血小板平均下降22.17×109/L4。因此,当血小板过低时,血浆置换后有增加出血的危险。人工肝治疗一般要求患者血小板计数在50×109/L以上,而有些肝衰竭患者因有长期肝病史,或伴脾功能亢进,或在肝硬化基础上发生,常伴有明显的血小板减少,血小板计数常在50×109/L以下,当病情需要人工肝治疗时则会受到一定的限制。罗玲等19研究表明人工肝血浆置换治疗中Evacure-4A膜型血浆分离器对血小板无明显影响。王璐等20研究证实人工肝治疗对血小板计数的影响是暂时性的,基线血小板计数>80.5×109/L是降低人工肝治疗后出血风险的最佳界值。本研究根据血小板计数将其分为3组,据患者病情分别选择PP+PE、DPMAS+PE、PBA+PE不同模式人工肝,均使用Evacure-4A膜型选择性血浆分离器,结果显示,B、C组血小板计数治疗前后比较均有统计学差异(P值均<0.001)。3组患者治疗过程中均未发生出血,不良反应发生率无统计学差异(P>0.05)。说明Evacure-4A膜型选择性血浆分离器对血小板影响较小,对血小板明显低下ACLF患者行人工肝治疗是安全的。

    多因素分析发现血小板是慢性肝病患者的独立预后因素之一21。肝病患者引起血小板减少的因素是多种多样的。有研究22表明,肝硬化和肝衰竭患者血小板减少的原因主要是肝脏凝血机制异常引起肝内弥散性血管内凝血形成,导致血小板的凝血消耗所致。许姗姗等23研究表明,ACLF患者基线血小板显著低于正常血小板的范围,血小板变化可能参与了ACLF的发生发展,其原因可能是参与肝脏微循环消耗所致。本研究中302例ACLF患者血小板计数呈不同程度的下降,其机制有待进一步探讨。人工肝治疗对肝衰竭患者的血细胞有一定影响,尤其是对PLT的破坏。选用对血小板影响较小的Evacure-4A膜型选择性血浆分离器,减少了人工肝治疗过程中对血小板的破坏,尤其对血小板计数在25×109/L~50×109/L分层组治疗前后无明显差异,亦未发生出血,在一定程度上拓宽了治疗的条件,对降低不良反应发生率及提高患者的抢救成功率有重要意义,值得临床进一步推广应用。

  • [1] CHENG L, RUAN ZH. Tim-3 and Tim-4 as the potential targets for antitumor therapy[J]. Hum Vaccin Immunother, 2015, 11( 10): 2458- 2462. DOI: 10.1080/21645515.2015.1056953.
    [2] KANDEL S, ADHIKARY P, LI GF, et al. The TIM3/Gal9 signaling pathway: An emerging target for cancer immunotherapy[J]. Cancer Lett, 2021, 510: 67- 78. DOI: 10.1016/j.canlet.2021.04.011.
    [3] SOLINAS C, de SILVA P, BRON D, et al. Significance of TIM3 expression in cancer: From biology to the clinic[J]. Semin Oncol, 2019, 46( 4-5): 372- 379. DOI: 10.1053/j.seminoncol.2019.08.005.
    [4] WU SS, DU XF, LOU GH, et al. Expression changes of Tim-3 as one of supplementary indicators for monitoring prognosis of liver pathological changes in chronic HBV infection[J]. BMC Infect Dis, 2022, 22( 1): 842. DOI: 10.1186/s12879-022-07841-1.
    [5] CLAYTON KL, DOUGLAS-VAIL MB, NUR-UR RAHMAN AK, et al. Soluble T cell immunoglobulin mucin domain 3 is shed from CD8+ T cells by the sheddase ADAM10, is increased in plasma during untreated HIV infection, and correlates with HIV disease progression[J]. J Virol, 2015, 89( 7): 3723- 3736. DOI: 10.1128/JVI.00006-15.
    [6] LAKE CM, VOSS K, BAUMAN BM, et al. TIM-3 drives temporal differences in restimulation-induced cell death sensitivity in effector CD8+ T cells in conjunction with CEACAM1[J]. Cell Death Dis, 2021, 12( 4): 400. DOI: 10.1038/s41419-021-03689-6.
    [7] VISHAL K, VIKAS D, PATIL AM, et al. CEACAM1 promotes CD8+T cell responses and improves control of a chronic viral infection[J]. Nature Communications, 2018, 9( 1): 2561. DOI: 10.1038/s41467-018-04832-2.
    [8] SORDI R, ÂC BET, DELLA JUSTINA AM, et al. The apoptosis clearance signal phosphatidylserine inhibits leukocyte migration and promotes inflammation resolution in vivo[J]. Eur J Pharmacol, 2020, 877: 173095. DOI: 10.1016/j.ejphar.2020.173095.
    [9] KANE LP. Regulation of Tim-3 function by binding to phosphatidylserine[J]. Biochem J, 2021, 478( 22): 3999- 4004. DOI: 10.1042/BCJ20210652.
    [10] WANG JY, LI C, FU JJ, et al. Tim-3 regulates inflammatory cytokine expression and Th17 cell response induced by monocytes from patients with chronic hepatitis B[J]. Scand J Immunol, 2019, 89( 5): e12755. DOI: 10.1111/sji.12755.
    [11] DAI SY, NAKAGAWA R, ITOH A, et al. Galectin-9 induces maturation of human monocyte-derived dendritic cells[J]. J Immunol, 2005, 175( 5): 2974- 2981. DOI: 10.4049/jimmunol.175.5.2974.
    [12] YU LH, LIU XL, WANG XH, et al. TIGIT+ TIM-3+ NK cells are correlated with NK cell exhaustion and disease progression in patients with hepatitis B virus-related hepatocellular carcinoma[J]. Oncoimmunology, 2021, 10( 1): 1942673. DOI: 10.1080/2162402X.2021.1942673.
    [13] LI F, FAN XD, WANG XY, et al. Genetic association and interaction of PD1 and TIM3 polymorphisms in susceptibility of chronic hepatitis B virus infection and hepatocarcinogenesis[J]. Discov Med, 2019, 27( 147): 79- 92.
    [14] MOHAMMADIZAD H, SHAHBAZI M, HASANJANI ROUSHAN MR, et al. TIM-3 as a marker of exhaustion in CD8+ T cells of active chronic hepatitis B patients[J]. Microb Pathog, 2019, 128: 323- 328. DOI: 10.1016/j.micpath.2019.01.026.
    [15] HOFMANN M, TAUBER C, HENSEL N, et al. CD8+ T cell responses during HCV infection and HCC[J]. J Clin Med, 2021, 10( 5): 991. DOI: 10.3390/jcm10050991.
    [16] LEE HM, BANINI BA. Updates on Chronic HBV: current challenges and future goals[J]. Curr Treat Options Gastroenterol, 2019, 17( 2): 271- 291. DOI: 10.1007/s11938-019-00236-3.
    [17] VIMALI J, YONG YK, MURUGESAN A, et al. Chronic viral infection compromises the quality of circulating mucosal-invariant T cells and follicular T helper cells via expression of both activating and inhibitory receptors[J]. Res Sq, 2023: rs. 3. rs-rs. 2862719. DOI: 10.21203/rs.3.rs-2862719/v1.
    [18] JIANG Y, LI Y, ZHU B. T-cell exhaustion in the tumor microenvironment[J]. Cell Death Dis, 2015, 6( 6): e1792. DOI: 10.1038/cddis.2015.162.
    [19] KOCHANOWICZ AM, OSUCH S, BERAK H, et al. Double positive CD4+CD8+(DP) T-cells display distinct exhaustion phenotype in chronic hepatitis C[J]. Cells, 2023, 12( 10): 1446. DOI: 10.3390/cells12101446.
    [20] WANG JM, SHI L, MA CJ, et al. Differential regulation of interleukin-12(IL-12)/IL-23 by Tim-3 drives T(H)17 cell development during hepatitis C virus infection[J]. J Virol, 2013, 87( 8): 4372- 4383. DOI: 10.1128/JVI.03376-12.
    [21] OKWOR CIA, OH JS, CRAWLEY AM, et al. Expression of inhibitory receptors on T and NK cells defines immunological phenotypes of HCV patients with advanced liver fibrosis[J]. iScience, 2020, 23( 9): 101513. DOI: 10.1016/j.isci.2020.101513.
    [22] MOTAMEDI M, SHAHBAZ S, FU L, et al. Galectin-9 expression defines a subpopulation of NK cells with impaired cytotoxic effector molecules but enhanced IFN-γ production, dichotomous to TIGIT, in HIV-1 infection[J]. ImmunoHorizons, 2019, 3( 11): 531- 546. DOI: 10.4049/immunohorizons.1900087.
    [23] FERRI S, LONGHI MS, de MOLO C, et al. A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis[J]. Hepatology, 2010, 52( 3): 999- 1007. DOI: 10.1002/hep.23792.
    [24] MIGITA K, NAKAMURA M, AIBA Y, et al. Association of soluble T cell immunoglobulin domain and mucin-3(sTIM-3) and mac-2 binding protein glycosylation isomer(M2BPGi) in patients with autoimmune hepatitis[J]. PLoS One, 2020, 15( 12): e0238540. DOI: 10.1371/journal.pone.0238540.
    [25] WU HW, TANG SY, ZHOU MY, et al. Tim-3 suppresses autoimmune hepatitis via the p38/MKP-1 pathway in Th17 cells[J]. FEBS Open Bio, 2021, 11( 5): 1406- 1416. DOI: 10.1002/2211-5463.13148.
    [26] HYUN J, HAN J, LEE CB, et al. Pathophysiological aspects of alcohol metabolism in the liver[J]. Int J Mol Sci, 2021, 22( 11): 5717. DOI: 10.3390/ijms22115717.
    [27] RIVA A, PALMA E, DEVSHI D, et al. Soluble TIM3 and its ligands galectin-9 and CEACAM1 are in disequilibrium during alcohol-related liver disease and promote impairment of anti-bacterial immunity[J]. Front Physiol, 2021, 12: 632502. DOI: 10.3389/fphys.2021.632502.
    [28] POUWELS S, SAKRAN N, GRAHAM Y, et al. Non-alcoholic fatty liver disease(NAFLD): A review of pathophysiology, clinical management and effects of weight loss[J]. BMC Endocr Disord, 2022, 22( 1): 63. DOI: 10.1186/s12902-022-00980-1.
    [29] WANG CE, XU WT, GONG J, et al. Treatment of patients with nonalcoholic fatty liver disease[J]. Clin J Med Offic, 2022, 50( 9): 897- 899, 903. DOI: 10.16680/j.1671-3826.2022.09.06.

    王彩娥, 许文涛, 宫建, 等. 非酒精性脂肪性肝病治疗研究进展[J]. 临床军医杂志, 2022, 50( 9): 897- 899, 903. DOI: 10.16680/j.1671-3826.2022.09.06.
    [30] DU X, WU Z, XU Y, et al. Increased Tim-3 expression alleviates liver injury by regulating macrophage activation in MCD-induced NASH mice[J]. Cell Mol Immunol, 2019, 16( 11): 878- 886. DOI: 10.1038/s41423-018-0032-0.
    [31] KISSELEVA T, BRENNER D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol, 2021, 18( 3): 151- 166. DOI: 10.1038/s41575-020-00372-7.
    [32] BAILLY C. Contribution of the TIM-3/Gal-9 immune checkpoint to tropical parasitic diseases[J]. Acta Trop, 2023, 238: 106792. DOI: 10.1016/j.actatropica.2022.106792.
    [33] LIU X, LI C, ZHU J, et al. Dysregulation of FTX/miR-545 signaling pathway downregulates Tim-3 and is responsible for the abnormal activation of macrophage in cirrhosis[J]. J Cell Biochem, 2019, 120( 2): 2336- 2346. DOI: 10.1002/jcb.27562.
    [34] LIU SY, XU C, YANG F, et al. Natural killer cells induce CD8+ T cell dysfunction via galectin-9/TIM-3 in chronic hepatitis B virus infection[J]. Front Immunol, 2022, 13: 884290. DOI: 10.3389/fimmu.2022.884290.
    [35] HUANG N, ZHOU R, CHEN HY, et al. Splenic CD4+ and CD8+ T-cells highly expressed PD-1 and Tim-3 in cirrhotic patients with HCV infection and portal hypertension[J]. Int J Immunopathol Pharmacol, 2021, 35: 20587384211061051. DOI: 10.1177/20587384211061051.
    [36] FADRIQUELA A, KIM CS, LEE KJ, et al. Characteristics of immune checkpoint regulators and potential role of soluble TIM-3 and LAG-3 in male patients with alcohol-associated liver disease[J]. Alcohol, 2022, 98: 9- 17. DOI: 10.1016/j.alcohol.2021.10.002.
    [37] DAS M, ZHU C, KUCHROO VK. Tim-3 and its role in regulating anti-tumor immunity[J]. Immunol Rev, 2017, 276( 1): 97- 111. DOI: 10.1111/imr.12520.
    [38] GANJALIKHANI HAKEMI M, JAFARINIA M, AZIZI M, et al. The role of TIM-3 in hepatocellular carcinoma: A promising target for immunotherapy?[J]. Front Oncol, 2020, 10: 601661. DOI: 10.3389/fonc.2020.601661.
    [39] ZHAO L, JIN Y, YANG C, et al. HBV-specific CD8 T cells present higher TNF-α expression but lower cytotoxicity in hepatocellular carcinoma[J]. Clin Exp Immunol, 2020, 201( 3): 289- 296. DOI: 10.1111/cei.13470.
    [40] LIN ZW, JIANG CW, WANG PY, et al. Caveolin-mediated cytosolic delivery of spike nanoparticle enhances antitumor immunity of neoantigen vaccine for hepatocellular carcinoma[J]. Theranostics, 2023, 13( 12): 4166- 4181. DOI: 10.7150/thno.85843.
    [41] SONG CH, ZHANG J, WEN RC, et al. Improved anti-hepatocellular carcinoma effect by enhanced Co-delivery of Tim-3 siRNA and sorafenib via multiple pH triggered drug-eluting nanoparticles[J]. Mater Today Bio, 2022, 16: 100350. DOI: 10.1016/j.mtbio.2022.100350.
    [42] ZHAO QF, WANG YH, ZHAO BY, et al. Neoantigen immunotherapeutic-gel combined with TIM-3 blockade effectively restrains orthotopic hepatocellular carcinoma progression[J]. Nano Lett, 2022, 22( 5): 2048- 2058. DOI: 10.1021/acs.nanolett.1c04977.
    [43] XIE RP, GU MQ, ZHANG FB, et al. Current status and prospect of surgical technique of liver transplantation[J]. Organ Transplant, 2022, 13( 1): 105- 110. DOI: 10.3969/j.issn.1674-7445.2022.01.016

    谢闰鹏, 谷明旗, 张凤博, 等. 肝移植手术技术的现状和展望[J]. 器官移植, 2022, 13( 1): 105- 110. DOI: 10.3969/j.issn.1674-7445.2022.01.016.
    [44] QIN L, ZHENG WX, JIANG SM, et al. Noninvasive prediction of immune rejection after liver transplantation with T cell immunoglobulin domain, and mucin domain-3[J]. Transplant Proc, 2022, 54( 7): 1881- 1886. DOI: 10.1016/j.transproceed.2022.04.032.
    [45] KOJIMA H, KADONO K, HIRAO H, et al. T cell CEACAM1-TIM-3 crosstalk alleviates liver transplant injury in mice and humans[J]. Gastroenterology, 2023, 165( 5): 1233- 1248. e 9. DOI: 10.1053/j.gastro.2023.07.004
    [46] RIFF A, HAEM RAHIMI M, DELIGNETTE MC, et al. Assessment of neutrophil subsets and immune checkpoint inhibitor expressions on T lymphocytes in liver transplantation: A preliminary study beyond the neutrophil-lymphocyte ratio[J]. Front Physiol, 2023, 14: 1095723. DOI: 10.3389/fphys.2023.1095723
    [47] MYSORE KR, GHOBRIAL RM, KANNANGANAT S, et al. Longitudinal assessment of T cell inhibitory receptors in liver transplant recipients and their association with posttransplant infections[J]. American Journal of Transplantation, 2018. DOI: 10.1111/ajt.14546.
  • 加载中
计量
  • 文章访问数:  419
  • HTML全文浏览量:  212
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-06
  • 录用日期:  2023-10-10
  • 出版日期:  2024-06-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

/

返回文章
返回