机器学习在慢性丙型肝炎诊疗中的应用
DOI: 10.12449/JCH250121
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:王扬负责课题设计,资料分析,拟定写作思路;韩华负责查阅文献,撰写论文,修改论文;段钟平负责指导文章撰写并最后定稿。
Application of machine learning in the diagnosis and treatment of chronic hepatitis C
-
摘要: 随着人工智能技术的发展,机器学习在医疗健康领域中展现出巨大的应用潜力。机器学习通过对患者的临床特征、血液检验、影像学检查等数据进行综合分析,建立相应的数学模型,以实现对疾病的诊断、治疗及病情评估的预测,指导疾病的管理。本文结合最新的研究成果,综述了机器学习在慢性丙型肝炎中的应用情况及研究进展。Abstract: With the development of artificial intelligence, machine learning has shown great potential in the field of medical health. Machine learning conducts a comprehensive analysis of patient data including clinical features, blood tests, and imaging examinations and establishes corresponding mathematical models to achieve the diagnosis and treatment of diseases and the prediction of disease conditions, thereby guiding disease management. With reference to the latest research findings, this article reviews the application of machine learning in chronic hepatitis C and related research advances.
-
Key words:
- Hepatitis C, Chronic /
- Machine Learning /
- Diagnosis /
- Therapeutics
-
[1] FARRAG AN, KAMEL AM, EL-BARAKY IA. Opportunities and challenges for the application of artificial intelligence paradigms into the management of endemic viral infections: The example of chronic hepatitis C virus[J]. Rev Med Virol, 2024, 34( 2): e2514. DOI: 10.1002/rmv.2514. [2] BRUNNER N, BRUGGMANN P. Trends of the global hepatitis C disease burden: Strategies to achieve elimination[J]. J Prev Med Public Health, 2021, 54( 4): 251- 258. DOI: 10.3961/jpmph.21.151. [3] LE BERRE C, SANDBORN WJ, ARIDHI S, et al. Application of artificial intelligence to gastroenterology and hepatology[J]. Gastroenterology, 2020, 158( 1): 76- 94. DOI: 10.1053/j.gastro.2019.08.058. [4] NADIF M, ROLE F. Unsupervised and self-supervised deep learning approaches for biomedical text mining[J]. Brief Bioinform, 2021, 22( 2): 1592- 1603. DOI: 10.1093/bib/bbab016. [5] HASSABIS D, KUMARAN D, SUMMERFIELD C, et al. Neuroscience-inspired artificial intelligence[J]. Neuron, 2017, 95( 2): 245- 258. DOI: 10.1016/j.neuron.2017.06.011. [6] DOYLE OM, LEAVITT N, RIGG JA. Finding undiagnosed patients with hepatitis C infection: An application of artificial intelligence to patient claims data[J]. Sci Rep, 2020, 10( 1): 10521. DOI: 10.1038/s41598-020-67013-6. [7] ELSHEWEY AM, SHAMS MY, TAWFEEK SM, et al. Optimizing HCV disease prediction in Egypt: The hyOPTGB framework[J]. Diagnostics, 2023, 13( 22): 3439. DOI: 10.3390/diagnostics13223439. [8] REISER M, WIEBNER B, HIRSCH J, et al. Neural-network analysis of socio-medical data to identify predictors of undiagnosed hepatitis C virus infections in Germany(DETECT)[J]. J Transl Med, 2019, 17( 1): 94. DOI: 10.1186/s12967-019-1832-4. [9] BUTARU AE, MĂMULEANU M, STREBA CT, et al. Resource management through artificial intelligence in screening programs-key for the successful elimination of hepatitis C[J]. Diagnostics, 2022, 12( 2): 346. DOI: 10.3390/diagnostics12020346. [10] LI TH S, CHIU HJ, KUO PH. Hepatitis C virus detection model by using random forest, logistic-regression and ABC algorithm[J]. IEEE Access, 2022, 10: 91045- 91058. DOI: 10.1109/ACCESS.2022.3202295. [11] ALIZARGAR A, CHANG YL, TAN TH. Performance comparison of machine learning approaches on hepatitis C prediction employing data mining techniques[J]. Bioengineering(Basel), 2023, 10( 4): 481. DOI: 10.3390/bioengineering10040481. [12] FLAMM S, LAWITZ E, BORG B, et al. Efficacy and safety of sofosbuvir/velpatasvir plus ribavirin in patients with hepatitis C virus-related decompensated cirrhosis[J]. Viruses, 2023, 15( 10): 2026. DOI: 10.3390/v15102026. [13] CHIRIKOV VV, MARX SE, MANTHENA SR, et al. Development of a comprehensive dataset of hepatitis C patients and examination of disease epidemiology in the United States, 2013-2016[J]. Adv Ther, 2018, 35( 7): 1087- 1102. DOI: 10.1007/s12325-018-0721-1. [14] CHURKIN A, KRISS S, UZIEL A, et al. Machine learning for mathematical models of HCV kinetics during antiviral therapy[J]. Math Biosci, 2022, 343: 108756. DOI: 10.1016/j.mbs.2021.108756. [15] PARK H, LO-CIGANIC WH, HUANG J, et al. Machine learning algorithms for predicting direct-acting antiviral treatment failure in chronic hepatitis C: An HCV-TARGET analysis[J]. Hepatology, 2022, 76( 2): 483- 491. DOI: 10.1002/hep.32347. [16] HAGA H, SATO H, KOSEKI A, et al. A machine learning-based treatment prediction model using whole genome variants of hepatitis C virus[J]. PLoS One, 2020, 15( 11): e0242028. DOI: 10.1371/journal.pone.0242028. [17] JANCZEWSKA E, KOŁEK MF, LORENC B, et al. Factors influencing the failure of interferon-free therapy for chronic hepatitis C: Data from the Polish EpiTer-2 cohort study[J]. World J Gastroenterol, 2021, 27( 18): 2177- 2192. DOI: 10.3748/wjg.v27.i18.2177. [18] SHOUSHA HI, AWAD AH, OMRAN DA, et al. Data mining and machine learning algorithms using IL28B genotype and biochemical markers best predicted advanced liver fibrosis in chronic hepatitis C[J]. Jpn J Infect Dis, 2018, 71( 1): 51- 57. DOI: 10.7883/yoken.JJID.2017.089. [19] HASHEM S, ESMAT G, ELAKEL W, et al. Comparison of machine learning approaches for prediction of advanced liver fibrosis in chronic hepatitis C patients[J]. IEEE/ACM Trans Comput Biol Bioinform, 2018, 15( 3): 861- 868. DOI: 10.1109/TCBB.2017.2690848. [20] KONERMAN MA, ZHANG YW, ZHU J, et al. Improvement of predictive models of risk of disease progression in chronic hepatitis C by incorporating longitudinal data[J]. Hepatology, 2015, 61( 6): 1832- 1841. DOI: 10.1002/hep.27750. [21] IOANNOU GN, TANG WJ, BESTE LA, et al. Assessment of a deep learning model to predict hepatocellular carcinoma in patients with hepatitis C cirrhosis[J]. JAMA Netw Open, 2020, 3( 9): e2015626. DOI: 10.1001/jamanetworkopen.2020.15626. -
本文二维码
计量
- 文章访问数: 507
- HTML全文浏览量: 252
- PDF下载量: 42
- 被引次数: 0

PDF下载 ( 533 KB)
下载:
