没食子酸对人肝癌HepG2细胞增殖、迁移、侵袭和凋亡的影响及其机制
DOI: 10.12449/JCH250315
Effect and mechanism of gallic acid on the proliferation, migration, invasion, and apoptosis of human hepatocellular carcinoma HepG2 cells
-
摘要:
目的 观察没食子酸(GA)对人肝癌HepG2细胞增殖、迁移、侵袭和凋亡的影响,并探讨其作用机制。 方法 用不同浓度GA(0、5、10、20、30、40、50 μg/mL)处理肝癌HepG2细胞24 h和48 h后,CCK-8法检测细胞活性并计算IC50值;实验分为对照组(HepG2细胞)、5 μg/mL GA组、10 μg/mL GA组、20 μg/mL GA组,平板克隆形成实验检测GA对细胞增殖能力的影响,细胞划痕和Transwell小室侵袭实验检测GA对细胞迁移和侵袭能力的影响,流式细胞仪检测GA对细胞凋亡的影响;Western Blot检测基质金属蛋白酶2(MMP-2)、MMP-9和凋亡相关蛋白表达情况。多组间比较采用单因素方差分析,进一步两两比较采用LSD-t检验。 结果 GA作用HepG2细胞24 h和48 h的IC50值为(38.02±2.58)μg/mL和(18.36±1.54)μg/mL。对照组、5 μg/mL GA组、10 μg/mL GA组、20 μg/mL GA组的细胞克隆形成数分别为(239.00±29.45)个、(210.00±19.00)个、(144.33±16.03)个、(57.00±9.55)个,与对照组比较,各实验组细胞克隆形成能力均明显下降(P值均<0.05)。处理24 h后,各组细胞的迁移率分别为42.62%±7.82%、35.34%±6.42%、21.85%±4.42%、12.57%±3.54%,穿膜细胞数目分别为(230.30±15.30)个、(182.12±12.60)个、(137.20±7.50)个、(124.40±6.80)个,与对照组比较,各实验组细胞的相对迁移率和穿膜细胞数均明显下降(P值均<0.05)。处理48 h后,各组细胞凋亡率分别为0.67%±0.08%、13.27%±1.07%、20.94%±2.45%、40.74%±2.63%,与对照组比较,各实验组细胞凋亡率均明显升高(P值均<0.05)。与对照组比较,各实验组细胞MMP-2、MMP-9表达水平均明显降低(P值均<0.05),Bcl-2关联X蛋白(Bax)、裂解的半胱氨酸天冬氨酸蛋白酶3(Cleaved caspase-3)蛋白表达水平均明显升高(P值均<0.05)。 结论 GA可抑制HepG2细胞增殖、迁移和侵袭,促进其凋亡,作用机制可能与调控Bax/Bcl-2以及迁移相关蛋白MMP-2、MMP-9有关。 Abstract:Objective To investigate the effect of gallic acid (GA) on the proliferation, migration, invasion, and apoptosis of human hepatocellular carcinoma HepG2 cells and its mechanism. Methods HepG2 cells were treated with different concentrations of GA (0, 5, 10, 20, 30, 40, and 50 μg/mL) for 24 and 48 hours, and CCK8 assay was used to measure cell viability and calculate IC50. The experiment was divided into control group (HepG2 cells), 5 μg/mL GA group, 10 μg/mL GA group, and 20 μg/mL GA group. Plate colony formation assay was used to evaluate the effect of GA on cell proliferation; wound healing assay and Transwell chamber assay were used to observe the effect of GA on cell migration and invasion; flow cytometry was used to observe the effect of GA on cell apoptosis; Western blot was used to measure the expression of matrix metallopeptidase-2 (MMP-2), matrix metallopeptidase-9 (MMP-9), and apoptosis-related proteins. A one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. Results The mean IC50 value of GA on HepG2 cells was 38.02±2.58 μg/mL at 24 hours and 18.36±1.54 μg/mL at 48 hours. The number of cell colonies was 239.00±29.45 in the control group, 210.00±19.00 in the 5 μg/mL GA group, 144.33±16.03 in the 10 μg/mL GA group, and 57.00±9.55 in the 20 μg/mL GA group, suggesting that compared with the control group, each GA group had a significant reduction in cell colony formation ability (all P<0.05). After 24 hours of treatment, the cell migration rate was 42.62%± 7.82% in the control group, 35.34%±6.42% in the 5 μg/mL GA group, 21.85%±4.42% in the 10 μg/mL GA group, and 12.57%± 3.54% in the 20 μg/mL GA group, respectively, in these four groups, and the number of transmembrane cells in these four groups was 230.30±15.30, 182.12±12.60, 137.20±7.50, and 124.40±6.80, respectively, suggesting that compared with the control group, each GA group had significant reductions in migration rate and the number of transmembrane cells (all P<0.05). After 48 hours of treatment, the cell apoptotic rate was 0.67%±0.08% in the control group, 13.27%±1.07% in the 5 μg/mL GA group, 20.94%± 2.45% in the 10 μg/mL GA group, and 40.74%±2.63% in the 20 μg/mL GA group, and compared with the control group, each GA group had a significant increase in cell apoptosis rate (all P<0.05). Compared with the control group, each GA group had significant reductions in the protein expression levels of MMP-2 and MMP-9 (all P<0.05) and significant increases in the protein expression levels of Bax and cleaved caspase-3 (all P<0.05). Conclusion GA can inhibit the proliferation, migration, and invasion of HepG2 cells and promote the apoptosis of HepG2 cells, possibly by regulating MMP-2, MMP-9, and the apoptosis-related proteins Bax/Bcl-2. -
Key words:
- Gallic Acid /
- Liver Neoplasms, Experimental /
- Cell Proliferation /
- Cell Movement /
- Apoptosis
-
血清(总)胆红素、血清肌酐和国际标准化比值(INR)等3个客观变量组成的终末期肝病模型(MELD)评分,最初用于预测经颈静脉肝内门体分流术(TIPS)后的存活率[1],后续研究发现,MELD评分也可以作为终末期肝病患者病死率的预测指标,以及酒精相关性肝炎(alcohol-associated hepatitis, AH)、食管静脉曲张破裂出血、肝硬化感染、肝硬化患者手术后(包括肝切除、创伤和肝肾综合征)等生存率的预测指标。基于肝病的严重程度,MELD评分在许多国家作为优化器官移植分配政策的基础[2]。尽管MELD评分最接近理想评分,但也有一些局限性,不能准确预测15%~20%终末期肝病患者的生存率。近年来发展分化出具有各自优点的MELD评分,包括MELD 2.0(MELD-Na)[3]、MELD3.0[4],以及MELD-Na+CRP+vWF-Ag[5]、MELD-GRAIL-Na[6]等,并有多个自动计算的应用程序。尽管每一种MELD评分在大多数情况下具有相似的预后价值,但在某些特定情况下,它们的益处可能是异质的。因此,进一步确定每一种MELD评分的适应证至关重要。
1. MELD的产生和应用
既往预测TIPS术后存活率多采用CTP评分。但CTP评分系统有诸多的不足之处,主要是使用了肝性脑病和腹水两个主观变量[7]。梅奥诊所的专家对美国4家医疗中心的231例接受选择性TIPS手术的患者进行了生存率研究,Cox比例风险回归分析发现,胆红素和肌酐的血清浓度、INR及潜在肝病的病因是接受选择性TIPS手术患者生存率的预测因素,并命名为梅奥TIPS模型。其计算公式为R=0.957×ln(肌酐mg/dL)+0.378×ln (胆红素mg/dL)+1.120×ln (INR)+0.643×病因(胆汁性或酒精性0,其他1)。梅奥TIPS模型>1.8的患者中位生存期为3个月或更短。在预测生存率方面,该模型优于CTP评分,并在来自荷兰的71例患者中得到独立验证[8]。该模型不仅是终末期肝病死亡风险的可靠指标,还适合用作肝移植器官分配优先顺序的选择。研究者将原有的梅奥TIPS公式乘以10,四舍五入接近整数,R=3.8×ln (胆红素mg/dL)+11.2×ln (INR)+9.6×ln (肌酐mg/dL)+6.4×病因(胆汁性或酒精性0,其他1),并将该模型正式命名为MELD[9]。
从2002年2月开始美国器官获取和移植网络(organ procurement and transplantation network,OPTN)委员会正式批准采用MELD评分作为国家肝移植器官分配优先顺序的主要风险分层工具[10]。最初的效果使登记等待移植人数减少12%,等待名单上的死亡人数减少3.5%[11-13];移植物1年存活率从1998年的79.5%提高到2007年的85.6%,患者存活率从85.4%提高到89.4%[14]。2006年12月,欧洲国家也实施了基于MELD的器官分配,整个欧洲地区等待移植名单的病死率显著降低[15]。
MELD评分作为疾病严重程度的客观量表,也有助于慢性肝病非移植患者的管理,包括预测无肝硬化患者的病死率和失代偿期肝硬化患者长期生存率[16]、非移植手术病死率[17]、慢性肝病患者静脉曲张破裂出血的预后评估[18-19]等。MELD评分还可预测非对乙酰氨基酚诱导的暴发性肝衰竭患者的病死率[19]和心力衰竭患者的肝功能障碍程度[20]等。
酒精性肝病(ALD)患者与患有其他肝病病因的患者相比,疾病进展更快,且常处于晚期。AH是ALD晚期的一种独特表型,临床表现为黄疸迅速发作或恶化、凝血功能障碍等,如果治疗不及时并出现继发感染,就可能发展为慢加急性肝衰竭,最终导致器官衰竭[21]。根据肝外器官衰竭的数量不同,1个月的死亡风险为20%~50%[22]。MELD评分≥21分对预测AH患者的死亡风险具有最高敏感性和特异性,比Maddrey判别函数更具实用性和统计学优势[23-24]。2024年美国胃肠病学院最新的ALD临床指南中,明确提出MELD是对AH重症程度进行分层的最准确评分[22]。
尽管MELD评分作为评估终末期肝病患者死亡风险的有效性已在大量研究中得到证实,但在临床实践中仍然存在着一定的局限性[18,25]:MELD评分在评估肝脏疾病患者的紧急程度时,较少考虑等待肝移植的时间,这可能会让一些寻求活体肝移植的患者失去耐心;由于肝癌和代谢疾病患者的化验结果可能正常而得分较低,往往忽略了这些患者移植的迫切性;MELD评分也没有解决肝源不足的根本问题[7];实验检查结果的可变性。因此,MELD评分对终末期肝病患者的评估仍然需要不断完善。鉴于MELD的诸多局限性,众多研究者不断探索MELD评分的合理性,相继出现了斯坦福大学的MELD-GRAIL,MELD-GRAIL=28.848+11.183×ln(INR)+ 3.150×ln(胆红素mg/dL)-5.078×ln(eGFR)[6]和密歇根大学团队的Re-weighted MELD,Re-weighted MELD=1.266×ln(1+肌酐mg/dL)+0.939×ln(1+胆红素mg/dL)+1.658×ln(1+INR)等[1]。
2. MELD 2.0
即便如此,低钠血症和持续腹水MELD评分<21分的患者等待移植前6个月死亡风险仍然超过40% [26]。后续的研究发现,血清钠<125 mmol/L是患者死亡的强烈独立预测因子,将血清钠添加到MELD中可以提高肝硬化患者3个月和6个月病死率的预测能力,于是提出了“MELD-Na”新模型,即MELD 2.0[3,27]。MELD-Na=MELD+1.59×(135-血钠),血清钠的最大值为140 mmol/L,最小值为125 mmol/L[27]。MELD-Na评分为20分、30分和40分的患者,6个月病死率分别为6%、16%和37%[27]。MELD-Na对高评分患者的影响不大,而对低评分的患者有重大影响。经过不断优化,新的MELD-Na公式为:MELD-Na=MELD+1.32×(137-血钠)-[0.033×MELD×(137-血钠)][28]。比如一个MELD评分为12分且血清钠水平为125 mmol/L的候选人,MELD-Na评分为23.13分,新的MELD评分使患者额外获得11分[29]。通过对69 213例年龄≥18岁的等待移植患者分析发现,MELD-Na评分≤11分的患者,肝移植生存获益(或缺乏)与血清钠无关,而对于MELD-Na评分>11分的患者,随着血清钠降低,生存获益明显增加[29]。因此,2016年1月正式应用于美国OPTN的器官分配[28]。
由于MELD最初是根据接受TIPS的患者数据开发的,并不一定完全适用于肝移植候选者的器官分配,所以梅奥诊所自身也在不断更新系数、改变各变量的上下限并纳入血清钠水平修改MELD评分,以提高捐赠肝脏分配的效率[2]。两个模型分别是:ReFitMELD=4.082×ln(胆红素mg/dL)+8.485×ln(肌酐mg/dL)+10.671×ln(INR)+ 7.432(胆红素下限为1 mg/dL,INR的上下限被限定为1和3,肌酐的上下限被限定在0.8 mg/dL和3 mg/dL,接受肾脏替代治疗的患者肌酐值设定为3 mg/dL);ReFitMELD-Na=4.258×ln(胆红素)+6.792×ln(肌酐)+ 8.290×ln(INR)+0.652×(140-血钠)-0.194×(140-血钠)×胆红素+6.327。除了与ReFitMELD的修正相同之外,血钠的上下限被限定在125 mmol/L和140 mmol/L,胆红素的上限为20 mg/dL,肌酐的下限为1 mg/dL。用估计的肾小球滤过率(eGFR)代替血清肌酐,可能改善MELD-Na评分对等待移植患者病死率的预测,特别是对于疾病严重程度较高的女性患者,由此开发了MELD-GRAIL-Na模型[6],MELD-GRAIL-Na=29.751+10.836×ln(INR)+3.039×ln(胆红素)-5.054×ln(eGFR)-0.372×ln(Na)。胆红素的下限为1 mg/dL(没有设定上限),INR上下限为1和3,血清钠上下限为125 mmol/L与140 mmol/L,eGFR的上下限为15 mL·min-1·1.73 m-2与90 mL·min-1·1.73 m-2。通过GRAIL估计的eGFR和重新估计的MELD-GRAIL-Na模型是3个月内等待移植患者死亡或除名的显著预测因素,评分在27~40分时,MELD-GRAIL-Na是观察到死亡的更好预测指标。与MELD-Na相比,使用MELD-GRAIL-Na可能会影响12%~17%的等待移植患者的预后,使16.7%的等待移植患者获得重新分类[6]。在后来的一些队列研究中发现,梅奥诊所开发的ReFitMELD-Na模型预测终末期肝病的病死率能力并非优于RefitMELD模型[30]。与MELD或MELD-Na相比,基于GRAIL的模型也没有明显的差异[31]。
导致肝硬化患者预后不良的因素中,全身炎症反应综合征(SIRS)也是不可回避的常见问题[32-33]。SIRS可导致血清肌酐值明显升高,严重影响肝硬化患者的MELD评分及生存率。发生SIRS的患者与细菌感染(P=0.02)、黄疸(P=0.011)、高血清肌酐水平(P=0.04)、高血清胆红素水平(P=0.002)、高INR(P=0.046)相关,显然,这与高MELD评分(P=0.001)和高序贯器官衰竭评分(P=0.003)密切相关,SIRS和MELD共存是终末期肝硬化患者死亡的独立预测因素[32-33]。将炎症的常用标志物C-反应蛋白(CRP)及反映内皮细胞功能障碍和门静脉高压相关的标志物血管性血友病因子抗原(von Willebrand factor antigen,vWF-Ag)添加到MELD-Na评分中,可以提高肝移植等待名单中病死率的预测[5,34],由此产生了MELD-Na新的评分模型:MELD-Na+CRP+vWF-Ag=([0.141×MELD-Na]+[0.210×CRP]+[0.002×vWF-Ag])×4.6[5]。
3. MELD 3.0
尽管MELD-Na评分临床实践中应用效果较好,但仍有缺陷,无法准确预测几个亚组患者的结果,如:等待名单上的患者年龄较大;有更多的非肝病合并症;与男性肝移植候选人相比,在控制MELD-Na评分的研究中,肝移植等待名单上的女性候选人病死率似乎不成比例地增高等[6,35-36]。为了解决MELD-Na评分的局限性,梅奥诊所在2021年提出了MELD 3.0评分[4]。他们利用公开的OPTN数据库中的数据,筛选更广泛的变量,包括年龄、性别、种族、血清钠、肌酐、eGFR、INR、胆红素、白蛋白和身高等。从种族、性别、生理、病理,以及实验误差和常规治疗等方面,对这些变量进行了细致的辨别、排除,最终确定了包括性别、胆红素、血钠、INR、肌酐和白蛋白,以及钠-胆红素和白蛋白-肌酐相互作用项的“最佳模型”,即MELD 3.0。MELD 3.0=1.33(女性)+ 4.56×ln(胆红素)+0.82×(137-血钠)-0.24×(137-血钠×ln(胆红素)+9.09×ln(INR)+11.14×ln(肌酐)+1.85×(3.5-白蛋白)-1.83×(3.5-白蛋白)×ln(肌酐)+6[4]。肌酐和胆红素值的下限设定为1mg/L,INR没有设置下限或上限,血清钠的下限和上限分别为125 mmol/L和137 mmol/L,血清白蛋白的下限和上限分别为1.5 g/dL和3.5 g/dL。MELD 3.0模型中的相互作用项能够在较高肌酐水平下缓解低白蛋白血症的负面影响,这一效应可能有助于降低高MELD评分患者发生不良结局的风险[37]。MELD 3.0评分于2023年用于肝移植器官分配。在登记时MELD 3.0评分超过40分与等待名单上的病死率增加有关,MELD 3.0评分为40~44分时,30天病死率为58.3%;评分为≥50时,30天病死率为82.4%。MELD 3.0评分可能使肝移植患者的生存获益更大[38]。而且MELD 3.0评分在预测严重AH患者的短期死亡和长期死亡方面比其他评分系统具有更好的效果[39]。
MELD 3.0评分的应用可能对女性患者更有利。比如胆红素水平为4 mg/dL、INR为1.2、肌酐为1.0 mg/dL、白蛋白为1.5 mg/dL和血清钠为135 mmol/L的女性患者的MELD-Na评分为15分,MELD 3.0评分为20分。白蛋白可能是一个比较有争议的变量,因为等待肝移植的患者因多种原因(如自发性腹膜炎)需要输注白蛋白。假设医源性输注将白蛋白从1.5 mg/dL增加到3.0 mg/dL,MELD 3.0评分将从20分降至17分,对肝移植等待名单上的患者会造成不利影响[40]。缓解这一问题的方法,就是对已经被列入移植名单的患者,不需要频繁地重新评分认证[41]。
4. 总结
自2002年以来一直使用MELD评分来确定肝移植器官分配的优先顺序,极大提高了终末期肝病患者90天的生存率。但在较低的评分下,MELD评分在预测不良结果方面尚不理想,MELD-Na评分在预测等待名单病死率方面优于MELD评分,可以更好地校准和区分肝移植候选者的死亡风险,但仍然无法准确预测几个亚组如女性和儿童候选人的结果,2021年提出的MELD 3.0评分对于接受腹部大手术、TIPS和其他干预措施的肝硬化患者进行风险分层的实用性仍然需要进一步研究。
无论是MELD、MELD-Na、MELD 3.0,还是MELD为基础的各种评分公式的研究和建议都是基于原始MELD进行计算,而不是MELD-Na[24,42]或MELD 3.0[43]。“终末期肝病模型”顾名思义是评估终末期肝病患者的预后,选择TIPS还是选择肝移植。应用于TIPS或肝移植之外的终末期肝病患者的分层应该是对MELD应用的“扩展”,尤其是AH患者未必都需要TIPS还是肝移植,在AH发病过程中MELD评分的应用非常值得商榷。黄疸是AH患者的特征性表现,经过有效的治疗(如类固醇激素和或N-乙酰半胱氨酸等),绝大部分患者是可以恢复的,MELD评分在25~39分的患者从皮质类固醇中获益最大[22]。因此,MELD的计算公式中特意将病因为“酒精性或胆汁淤积性”的评分减去6.4分。目前国内外自动计算软件中很少考虑酒精这个特殊病因,存在过度诊断的现状,AH患者过早进入肝移植候选人队列,消耗了稀缺的供肝资源,应引起临床医生的重视。
-
表 1 各组HepG2细胞迁移率和穿膜细胞数
Table 1. Migration rate and number invasion of HepG2 cells in each group
组别 迁移率(η/%) 穿膜细胞数(个) 对照组 42.62±7.82 230.30±15.30 5 μg/mL GA组 35.34±6.421) 182.12±12.601) 10 μg/mL GA组 21.85±4.421) 137.20±7.501) 20 μg/mL GA组 12.57±3.541) 124.40±6.801) F值 40.030 82.926 P值 <0.001 <0.001 注:与对照组比较,1)P<0.05。
-
[1] SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71( 3): 209- 249. DOI: 10.3322/caac.21660. [2] JIN AH, ZHU JB, YIN XZ, et al. Effect of iridoid glycosides from Boschniakia rossica on epithelial-mesenchymal transition of HepG2 cells induced by transforming growth factor-beta 1[J]. J Clin Hepatol, 2024, 40( 6): 1175- 1182. DOI: 10.12449/JCH240617.金爱花, 朱洁波, 尹学哲, 等. 草苁蓉环烯醚萜苷(IGBR)对TGF-β1诱导的HepG2细胞上皮间质转化模型的影响[J]. 临床肝胆病杂志, 2024, 40( 6): 1175- 1182. DOI: 10.12449/JCH240617. [3] XIE DY, SHI JY, ZHOU J, et al. Clinical practice guidelines and real-life practice in hepatocellular carcinoma: A Chinese perspective[J]. Clin Mol Hepatol, 2023, 29( 2): 206- 216. DOI: 10.3350/cmh.2022.0402. [4] FAN R, PAPATHEODORIDIS G, SUN J, et al. aMAP risk score predicts hepatocellular carcinoma development in patients with chronic hepatitis[J]. J Hepatol, 2020, 73( 6): 1368- 1378. DOI: 10.1016/j.jhep.2020.07.025. [5] ZHOU J, SUN HC, WANG Z, et al. Guidelines for the diagnosis and treatment of hepatocellular carcinoma(2019 edition)[J]. Liver Cancer, 2020, 9( 6): 682- 720. DOI: 10.1159/000509424. [6] SUN GL, WANG D. Gallic acid from Terminalia chebula inhibited the growth of esophageal carcinoma cells by suppressing the Hippo signal pathway[J]. Iran J Basic Med Sci, 2020, 23( 11): 1401- 1408. DOI: 10.22038/ijbms.2020.42283.9982. [7] CHOI HJ, SONG JH, BHATT LR, et al. Anti-human rhinovirus activity of Gallic acid possessing antioxidant capacity[J]. Phytother Res, 2010, 24( 9): 1292- 1296. DOI: 10.1002/ptr.3101. [8] LIN XM, WANG GF, LIU P, et al. Gallic acid suppresses colon cancer proliferation by inhibiting SRC and EGFR phosphorylation[J]. Exp Ther Med, 2021, 21( 6): 638. DOI: 10.3892/etm.2021.10070. [9] ZHANG TX, MA LJ, WU PF, et al. Gallic acid has anticancer activity and enhances the anticancer effects of cisplatin in non-small cell lung cancer A549 cells via the JAK/STAT3 signaling pathway[J]. Oncol Rep, 2019, 41( 3): 1779- 1788. DOI: 10.3892/or.2019.6976. [10] YANG XL, XUE JH, CHEN TY, et al. Effect of atractylone on the viability and apoptosis of hepatoma HepG2 cells and related mechanism[J]. J Clin Hepatol, 2021, 37( 11): 2589- 2594. DOI: 10.3969/j.issn.1001-5256.2021.11.020.杨雪丽, 薛建华, 陈天阳, 等. 苍术酮对肝癌HepG2细胞活性、凋亡的影响及其相关机制[J]. 临床肝胆病杂志, 2021, 37( 11): 2589- 2594. DOI: 10.3969/j.issn.1001-5256.2021.11.020. [11] QU Y, ZHANG WJ, CHEN FF, et al. Progress in research and development of chemical drugs and treatment of liver cancer[J]. Gansu Sci Technol, 2023, 39( 8): 114- 119, 127. DOI: 10.3969/j.issn.1000-0952.2023.08.028.屈延, 张文杰, 陈芳芳, 等. 肝癌的化学药物研发及治疗进展[J]. 甘肃科技, 2023, 39( 8): 114- 119, 127. DOI: 10.3969/j.issn.1000-0952.2023.08.028. [12] ZHAO YY, HAN ZQ, ZOU YP, et al. Effect of lysophosphatidic acid on hepatoma cells and related mechanism[J]. J Clin Hepatol, 2023, 39( 11): 2623- 2628. DOI: 10.3969/j.issn.1001-5256.2023.11.016.赵燕颖, 韩振琦, 邹艳平, 等. 溶血磷脂酸(LPA)对肝癌细胞的影响及相关机制的初步探讨[J]. 临床肝胆病杂志, 2023, 39( 11): 2623- 2628. DOI: 10.3969/j.issn.1001-5256.2023.11.016. [13] XU HC, WANG FL, XIE LH. Current status and perspectives in clinical treatment of intermediate and advanced primary hepatocellular carcinoma[J]. J Changchun Univ Chin Med, 2024, 40( 1): 103- 107. DOI: 10.13463/j.cnki.cczyy.2024.01.024.许华晨, 王凤玲, 谢林虎. 中晚期原发性肝细胞癌的临床治疗现状与展望[J]. 长春中医药大学学报, 2024, 40( 1): 103- 107. DOI: 10.13463/j.cnki.cczyy.2024.01.024. [14] YANG C, ZHANG HL, ZHANG LM, et al. Evolving therapeutic landscape of advanced hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2023, 20( 4): 203- 222. DOI: 10.1038/s41575-022-00704-9. [15] WU H, NULAN BDL, LIU LY, et al. Inhibitory effects of Gallic acid on human esophageal cancer TE-1 cells in vitro and its mechanism[J]. China Pharm, 2022, 33( 12): 1448- 1454. DOI: 10.6039/j.issn.1001-0408.2022.12.07.吴昊, 努兰·拜都拉, 刘琳玉, 等. 没食子酸对人食管癌TE-1细胞的体外抑制作用及其机制[J]. 中国药房, 2022, 33( 12): 1448- 1454. DOI: 10.6039/j.issn.1001-0408.2022.12.07. [16] HAN QQ, YE MR, JIN QL. Demethylzeylasteral inhibits proliferation, migration and invasion and promotes apoptosis of non-small cell lung cancer cells by inhibiting the AKT/CREB signaling pathway[J]. J South Med Univ, 2024, 44( 2): 280- 288. DOI: 10.12122/j.issn.1673-4254.2024.02.10.韩齐齐, 叶梦然, 金齐力. 去甲泽拉木醛通过抑制AKT/CREB信号通路抑制非小细胞肺癌细胞的增殖、迁移和侵袭[J]. 南方医科大学学报, 2024, 44( 2): 280- 288. DOI: 10.12122/j.issn.1673-4254.2024.02.10. [17] XU GS, JIANG HB, PAN J, et al. Inhibitory effects of betulinic acid on migration and invasion of gastric cancer MGC-803 cells and their mechanisms[J]. J Jilin Univ(Med Edit), 2022, 48( 1): 122- 128. DOI: 10.13481/j.1671-587X.20220115.许广松, 蒋海兵, 盘箐, 等. 桦木酸对胃癌MGC-803细胞迁移和侵袭的抑制作用及其机制[J]. 吉林大学学报(医学版), 2022, 48( 1): 122- 128. DOI: 10.13481/j.1671-587X.20220115. [18] JIANG B, YANG T, FENG LF, et al. Effects of salidroside on proliferation, migration, invasion and apoptosis of 97H cells[J]. Chin Pharmacol Bull, 2023, 39( 3): 445- 452. DOI: 10.12360/CPB202202019.蒋兵, 杨韬, 封龙飞, 等. 红景天苷对97H细胞增殖、迁移、侵袭及凋亡的影响[J]. 中国药理学通报, 2023, 39( 3): 445- 452. DOI: 10.12360/CPB202202019. [19] PANG LL, HU Y, LUO J, et al. Study of the mechanism of combretastatin a-4 derivative LGD5 induced G2/M cycle arrest and apoptosis in human cervical cancer HeLa cells[J]. Chin J Clin Pharmacol Ther, 2024, 29( 10): 1100- 1109. DOI: 10.12092/j.issn.1009-2501.2024.10.003.庞丽丽, 胡莹, 罗洁, 等. CA-4类衍生物LGD5诱导人宫颈癌HeLa细胞发生G2/M周期阻滞和凋亡的机制研究[J]. 中国临床药理学与治疗学, 2024, 29( 10): 1100- 1109. DOI: 10.12092/j.issn.1009-2501.2024.10.003. [20] YUAN CL, CHEN GP, JING CB, et al. Eriocitrin, a dietary flavonoid suppressed cell proliferation, induced apoptosis through modulation of JAK2/STAT3 and JNK/p38 MAPKs signaling pathway in MCF-7 cells[J]. J Biochem Mol Toxicol, 2022, 36( 1): e22943. DOI: 10.1002/jbt.22943. [21] WANG ZY, ZHANG H, ZHOU JH, et al. Eriocitrin from lemon suppresses the proliferation of human hepatocellular carcinoma cells through inducing apoptosis and arresting cell cycle[J]. Cancer Chemother Pharmacol, 2016, 78( 6): 1143- 1150. DOI: 10.1007/s00280-016-3171-y. [22] ZHOU H, ZHANG YQ, GAN C, et al. Eriocitrin suppresses proliferation and migration of hepatocellular carcinoma SMMC-7721 cells by promoting ROS production and activating the MAPK pathway[J]. J South Med Univ, 2023, 43( 3): 412- 419. DOI: 10.12122/j.issn.1673-4254.2023.03.11.周慧, 张雨晴, 甘超, 等. 圣草次苷抑制肝细胞癌SMMC-7721细胞的增殖和迁移: 基于激活ROS/MAPKs信号轴[J]. 南方医科大学学报, 2023, 43( 3): 412- 419. DOI: 10.12122/j.issn.1673-4254.2023.03.11. -