Construction and functional enrichment analysis of circRNA-miRNA-mRNA regulatory network for liver cancer based on high-throughput sequencing
-
摘要:
目的本研究基于肝癌相关非编码RNA高通量测序数据,构建互作网络及功能富集分析,筛选可能通过竞争性内源RNA(ceRNA)机制参与肝癌发生发展的环状RNA(circRNA)。方法利用GEO数据库中的肝癌非编码RNA高通量测序数据,依据ceRNA理论构建circRNA-miRNA-mRNA网络。随后,进行了基因本体论分析(GO)和京都基因与基因组百科全书(KEGG)分析,用于具有ceRNA潜在功能的circRNA的探索及功能注释。结果从GEO数据库中最终筛选了9个共表达circRNAs、20个共表达miRNAs以及153个共表达mRNAs,成功构建肝癌相关circRNA-miRNA-mRNA网络。GO分析结果揭示了90个生物过程,其主要涉及12个功能簇,主要包括肝细胞分化、细胞周期相变调节、转录因子活性负调控等功能,KEGG分析表明这些共表达circRNAs还参与p53、PI3K-Akt信号通路。结论本研究为circRNA通过ceRNA机制介导肝癌发生发展提供了新的见解。
-
关键词:
- 肝肿瘤 /
- RNA,未翻译 /
- 高通量核苷酸序列分析
Abstract:Objective To construct a protein interaction network based on high-throughput sequencing data of liver cancer-related non-coding RNAs, to perform a functional enrichment analysis, and to screen out circular RNAs (circRNAs) participating in the development and progression of liver cancer via the mechanism of competitive endogenous RNA (ceRNA) . Methods The circRNA-miRNA-mRNA network was constructed using gene expression omnibus (GEO) data based on the ceRNA theory. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) analyses were performed to identify circRNAs with potential ceRNA function and explore their functions. Results A total of 9 co-expressed circRNAs, 20 co-expressed miRNAs, and 153 co-expressed mRNAs were screened out from the GEO database, and the liver cancer-related circRNA-miRNA-mRNA network was successfully constructed. The GO analysis revealed 90 biological processes, which mainly involved 12 functional clusters including hepatocyte differentiation, phase-change regulation of cell cycle, and negative regulation of transcription factor activity. The KEGG analysis showed that the co-expressed circRNAs were also involved in the p53 and PI3 K-Akt signaling pathways. Conclusion This study provides new insights for circRNAs mediating the development and progression of liver cancer through the mechanism of ceRNA.
-
[1] EL-SERAG HB, RUDOLPH KL. Hepatocellular carcinoma:Epidemiology and molecular carcinogenesis[J]. Gastroenterology, 2007, 132 (7) :2557-2576. [2] LLOVET JM, MONTAL R, SIA D, et al. Molecular therapies and precision medicine for hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2018, 15 (10) :599-616. [3] SOLE C, ARNAIZ E, MANTEROLA L, et al. The circulating transcriptome as a source of cancer liquid biopsy biomarkers[J]. Semin Cancer Biol, 2019.[Epub ahead of print] [4] ZHONG Y, DU Y, XUE Y, et al. Circular RNAs function as ceRNAs to regulate and control human cancer progression[J]. Mol Cancer, 2018, 17 (1) :79. [5] YAO R, ZOU H, LIAO W. Prospect of circular RNA in hepatocellular carcinoma:A novel potential biomarker and therapeutic target[J]. Front Oncol, 2018, 8:332. [6] DONG Y, ZHANG X, XIE M, et al. Reference genome of wild goat (capra aegagrus) and sequencing of goat breeds provide insight into genic basis of goat domestication[J]. BMC Genomics, 2015, 16:431. [7] ZHOU M, WANG X, SHI H, et al. Characterization of long non-coding RNA-associated ceRNA network to reveal potential prognostic lncRNA biomarkers in human ovarian cancer[J].Oncotarget, 2016, 7 (11) :12598-12611. [8] WANG H, NIU L, JIANG S, et al. Comprehensive analysis of aberrantly expressed profiles of lncRNAs and miRNAs with associated ceRNA network in muscle-invasive bladder cancer[J]. Oncotarget, 2016, 7 (52) :86174-86185. [9] TREIBER T, TREIBER N, MEISTER G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways[J].Nat Rev Mol Cell Biol, 2019, 20 (1) :5-20. [10] SU Q, KUMAR V, SUD N, et al. MicroRNAs in the pathogenesis and treatment of progressive liver injury in NAFLD and liver fibrosis[J]. Adv Drug Deliv Rev, 2018, 129:54-63. [11] ZHOU W, YANG WL, ZHANG HW, et al. Advances in the relationship between microRNA-483 and digestive system tumors[J]. Chin J Dig Surg, 2018, 17 (5) :522-526. (in Chinese) 周威, 杨万里, 张洪伟, 等.微RNA-483与消化系统肿瘤关系的研究进展[J].中华消化外科杂志, 2018, 17 (5) :522-526. [12] LING H, FABBRI M, CALIN GA. MicroRNAs and other noncoding RNAs as targets for anticancer drug development[J].Nat Rev Drug Discov, 2013, 12 (11) :847-865. [13] WONG CM, TSANG FH, NG IO. Non-coding RNAs in hepatocellular carcinoma:Molecular functions and pathological implications[J]. Nat Rev Gastroenterol Hepatol, 2018, 15 (3) :137-151. [14] SU H, TAO T, YANG Z, et al. Circular RNA cTFRC acts as the sponge of MicroRNA-107 to promote bladder carcinoma progression[J]. Mol Cancer, 2019, 18 (1) :27. [15] ZHANG X, WANG S, WANG H, et al. Circular RNA circNRIP1acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/m TOR pathway[J]. Molecular cancer, 2019, 18 (1) :20. [16] CAI M, XU L, SHEN L, et al. Expression of long-chain noncoding RNA FOXN3-AS2 in hepatocellular carcinoma and its effect on proliferation and invasion of hepatoma cells[J]. Chin J Clin Pharmacol Ther, 2018, 23 (11) :1246-1251. (in Chinese) 蔡民, 许浏, 沈兰, 等.长链非编码RNA FOXN3-AS2在肝癌中的表达及其对肝癌细胞增殖和侵袭的影响[J].中国临床药理学与治疗学, 2018, 23 (11) :1246-1251. [17] ZHANG X, XU Y, QIAN Z, et al. CircRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma[J]. Cell Death Dis, 2018, 9 (11) :1091. [18] BAI N, PENG E, QIU X, et al. CircFBLIM1 act as a ceRNA to promote hepatocellular cancer progression by sponging miR-346[J]. J Exp Clin Cancer Res, 2018, 37 (1) :172. [19] CHENG Q, NING D, CHEN J, et al. SIX1 and DACH1 influence the proliferation and apoptosis of hepatocellular carcinoma through regulating p53[J]. Cancer Biol Ther, 2018, 19 (5) :381-390. [20] CHEN JS, WANG Q, FU XH, et al. Involvement of PI3K/PTEN/AKT/m TOR pathway in invasion and metastasis in hepatocellular carcinoma:Association with MMP-9[J]. Hepatol Res, 2010, 39 (2) :177-186. [21] LIU D, CUI L, WANG Y, et al. Hepatitis B e antigen and its precursors promote the progress of hepatocellular carcinoma by interacting with NUMB and decreasing p53 activity[J].Hepatology, 2016, 64 (2) :390-404. [22] ZHANG ZY, HONG D, NAM SH, et al. SIRT1 regulates oncogenesis via a mutant p53-dependent pathway in hepatocellular carcinoma[J]. J Hepatol, 2015, 62 (1) :121-130. [23] HUANG Q, LI J, XING J, et al. CD147 promotes reprogramming of glucose metabolism and cell proliferation in HCC cells by inhibiting the p53-dependent signaling pathway[J]. J Hepatol, 2014, 61 (4) :859-866. [24] ZUO X, CHEN Z, CAI J, et al. 5-hydroxytryptamine receptor1D aggravates hepatocellular carcinoma progression through FoxO6 in AKT-dependent and independent manners[J].Hepatology, 2019, 69 (5) :2031-2047. [25] CHEN Z, GAO W, PU L, et al. PRDM8 exhibits antitumor activities toward hepatocellular carcinoma by targeting NAP1L1[J]. Hepatology, 2018.[Epub ahead of print] [26] LIU S, DU Y, MA H, et al. Preclinical comparison of regorafenib and sorafenib efficacy for hepatocellular carcinoma using multimodality molecular imaging[J]. Cancer Lett, 2019, 453:74-83. [27] DENG H, SHANG W, LU G, et al. Targeted and multifunctional technology for identification between hepatocellular carcinoma and liver cirrhosis[J]. ACS Appl Mater Interfaces, 2019, 11 (16) :14526-14537. [28] FAN YQ, DONG SL. Recent advances in targeted drug therapy for hepatocellular carcinoma[J]. J Clin Hepatol, 2018, 34 (2) :424-428. (in Chinese) 樊永强, 董胜利.靶向药物治疗肝细胞癌的最新进展[J].临床肝胆病杂志, 2018, 34 (2) :424-428. [29] LIU Y, FENG J, SUN M, et al. Long noncoding RNA HULC activates HBV by modulating HBx/STAT3/miR-539/APOBEC3B signaling in HBV-related hepatocellular carcinoma[J]. Cancer letters, 2019, 454:158-170. [30] MUKHERJI S, EBERT MS, ZHENG GX, et al. MicroRNAs can generate thresholds in target gene expression[J]. Nat Genet, 2011, 43 (9) :854-859. [31] WEE LM, FLORES-JASSO CF, SALOMON WE, et al. Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties[J]. Cell, 2012, 151 (5) :1055-1067. 期刊类型引用(7)
1. 毕思童,侯礼轩,李丽华. 新生儿缺血缺氧性脑病ceRNA调控网络构建分析. 北京生物医学工程. 2024(04): 361-369 . 百度学术
2. 李四桥,常清潭,刘海潮,刘少朋. 环状RNA circ-MFN2在胰腺癌中的表达及其临床意义. 中国普外基础与临床杂志. 2021(06): 762-767 . 百度学术
3. 张亚,浦涧. circRNA在肝细胞癌致病机制中的研究进展. 右江民族医学院学报. 2021(05): 664-668 . 百度学术
4. 肖二辉,宁会彬,康月花,殷辉,马力,毛重山,赵岩,尚佳. 下调miR-196b靶向核凋亡诱导因子1调控肝癌细胞生长和凋亡的机制. 临床肝胆病杂志. 2020(10): 2230-2235 . 本站查看
5. 杨庆余,韦志平,张胥磊,濮阳娟,费勇,吴亮. miRNA-375在肝癌患者血清表达和疗效评估的研究价值. 系统医学. 2020(18): 29-31+71 . 百度学术
6. 李胜男,王梦旭,胡伟东,陈少凤,陈杏兰,李友. miR-186过表达慢病毒载体的构建及鉴定. 吉林大学学报(医学版). 2019(05): 997-1002+1193 . 百度学术
7. 张跃,韩涛,郑振东,韩磊. 肝癌干细胞分泌外泌体对肝癌恶性生物学行为调控研究. 临床军医杂志. 2019(12): 1284-1286 . 百度学术
其他类型引用(6)
-