中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高通量测序的肝癌circRNA-miRNA-mRNA调控网络构建及功能富集分析

赵静 杨兴武 李京涛 王旗 王亮 王国泰

引用本文:
Citation:

基于高通量测序的肝癌circRNA-miRNA-mRNA调控网络构建及功能富集分析

DOI: 10.3969/j.issn.1001-5256.2019.08.018
基金项目: 

国家自然科学基金(81603612); 陕西省科技厅科研基金(2016SF-234,2018KJXX-093); 宁夏回族自治区自然科学基金(NZ17278); 

详细信息
  • 中图分类号: R735.7

Construction and functional enrichment analysis of circRNA-miRNA-mRNA regulatory network for liver cancer based on high-throughput sequencing

Research funding: 

 

  • 摘要:

    目的本研究基于肝癌相关非编码RNA高通量测序数据,构建互作网络及功能富集分析,筛选可能通过竞争性内源RNA(ceRNA)机制参与肝癌发生发展的环状RNA(circRNA)。方法利用GEO数据库中的肝癌非编码RNA高通量测序数据,依据ceRNA理论构建circRNA-miRNA-mRNA网络。随后,进行了基因本体论分析(GO)和京都基因与基因组百科全书(KEGG)分析,用于具有ceRNA潜在功能的circRNA的探索及功能注释。结果从GEO数据库中最终筛选了9个共表达circRNAs、20个共表达miRNAs以及153个共表达mRNAs,成功构建肝癌相关circRNA-miRNA-mRNA网络。GO分析结果揭示了90个生物过程,其主要涉及12个功能簇,主要包括肝细胞分化、细胞周期相变调节、转录因子活性负调控等功能,KEGG分析表明这些共表达circRNAs还参与p53、PI3K-Akt信号通路。结论本研究为circRNA通过ceRNA机制介导肝癌发生发展提供了新的见解。

     

  • [1] EL-SERAG HB, RUDOLPH KL. Hepatocellular carcinoma:Epidemiology and molecular carcinogenesis[J]. Gastroenterology, 2007, 132 (7) :2557-2576.
    [2] LLOVET JM, MONTAL R, SIA D, et al. Molecular therapies and precision medicine for hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2018, 15 (10) :599-616.
    [3] SOLE C, ARNAIZ E, MANTEROLA L, et al. The circulating transcriptome as a source of cancer liquid biopsy biomarkers[J]. Semin Cancer Biol, 2019.[Epub ahead of print]
    [4] ZHONG Y, DU Y, XUE Y, et al. Circular RNAs function as ceRNAs to regulate and control human cancer progression[J]. Mol Cancer, 2018, 17 (1) :79.
    [5] YAO R, ZOU H, LIAO W. Prospect of circular RNA in hepatocellular carcinoma:A novel potential biomarker and therapeutic target[J]. Front Oncol, 2018, 8:332.
    [6] DONG Y, ZHANG X, XIE M, et al. Reference genome of wild goat (capra aegagrus) and sequencing of goat breeds provide insight into genic basis of goat domestication[J]. BMC Genomics, 2015, 16:431.
    [7] ZHOU M, WANG X, SHI H, et al. Characterization of long non-coding RNA-associated ceRNA network to reveal potential prognostic lncRNA biomarkers in human ovarian cancer[J].Oncotarget, 2016, 7 (11) :12598-12611.
    [8] WANG H, NIU L, JIANG S, et al. Comprehensive analysis of aberrantly expressed profiles of lncRNAs and miRNAs with associated ceRNA network in muscle-invasive bladder cancer[J]. Oncotarget, 2016, 7 (52) :86174-86185.
    [9] TREIBER T, TREIBER N, MEISTER G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways[J].Nat Rev Mol Cell Biol, 2019, 20 (1) :5-20.
    [10] SU Q, KUMAR V, SUD N, et al. MicroRNAs in the pathogenesis and treatment of progressive liver injury in NAFLD and liver fibrosis[J]. Adv Drug Deliv Rev, 2018, 129:54-63.
    [11] ZHOU W, YANG WL, ZHANG HW, et al. Advances in the relationship between microRNA-483 and digestive system tumors[J]. Chin J Dig Surg, 2018, 17 (5) :522-526. (in Chinese) 周威, 杨万里, 张洪伟, 等.微RNA-483与消化系统肿瘤关系的研究进展[J].中华消化外科杂志, 2018, 17 (5) :522-526.
    [12] LING H, FABBRI M, CALIN GA. MicroRNAs and other noncoding RNAs as targets for anticancer drug development[J].Nat Rev Drug Discov, 2013, 12 (11) :847-865.
    [13] WONG CM, TSANG FH, NG IO. Non-coding RNAs in hepatocellular carcinoma:Molecular functions and pathological implications[J]. Nat Rev Gastroenterol Hepatol, 2018, 15 (3) :137-151.
    [14] SU H, TAO T, YANG Z, et al. Circular RNA cTFRC acts as the sponge of MicroRNA-107 to promote bladder carcinoma progression[J]. Mol Cancer, 2019, 18 (1) :27.
    [15] ZHANG X, WANG S, WANG H, et al. Circular RNA circNRIP1acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/m TOR pathway[J]. Molecular cancer, 2019, 18 (1) :20.
    [16] CAI M, XU L, SHEN L, et al. Expression of long-chain noncoding RNA FOXN3-AS2 in hepatocellular carcinoma and its effect on proliferation and invasion of hepatoma cells[J]. Chin J Clin Pharmacol Ther, 2018, 23 (11) :1246-1251. (in Chinese) 蔡民, 许浏, 沈兰, 等.长链非编码RNA FOXN3-AS2在肝癌中的表达及其对肝癌细胞增殖和侵袭的影响[J].中国临床药理学与治疗学, 2018, 23 (11) :1246-1251.
    [17] ZHANG X, XU Y, QIAN Z, et al. CircRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma[J]. Cell Death Dis, 2018, 9 (11) :1091.
    [18] BAI N, PENG E, QIU X, et al. CircFBLIM1 act as a ceRNA to promote hepatocellular cancer progression by sponging miR-346[J]. J Exp Clin Cancer Res, 2018, 37 (1) :172.
    [19] CHENG Q, NING D, CHEN J, et al. SIX1 and DACH1 influence the proliferation and apoptosis of hepatocellular carcinoma through regulating p53[J]. Cancer Biol Ther, 2018, 19 (5) :381-390.
    [20] CHEN JS, WANG Q, FU XH, et al. Involvement of PI3K/PTEN/AKT/m TOR pathway in invasion and metastasis in hepatocellular carcinoma:Association with MMP-9[J]. Hepatol Res, 2010, 39 (2) :177-186.
    [21] LIU D, CUI L, WANG Y, et al. Hepatitis B e antigen and its precursors promote the progress of hepatocellular carcinoma by interacting with NUMB and decreasing p53 activity[J].Hepatology, 2016, 64 (2) :390-404.
    [22] ZHANG ZY, HONG D, NAM SH, et al. SIRT1 regulates oncogenesis via a mutant p53-dependent pathway in hepatocellular carcinoma[J]. J Hepatol, 2015, 62 (1) :121-130.
    [23] HUANG Q, LI J, XING J, et al. CD147 promotes reprogramming of glucose metabolism and cell proliferation in HCC cells by inhibiting the p53-dependent signaling pathway[J]. J Hepatol, 2014, 61 (4) :859-866.
    [24] ZUO X, CHEN Z, CAI J, et al. 5-hydroxytryptamine receptor1D aggravates hepatocellular carcinoma progression through FoxO6 in AKT-dependent and independent manners[J].Hepatology, 2019, 69 (5) :2031-2047.
    [25] CHEN Z, GAO W, PU L, et al. PRDM8 exhibits antitumor activities toward hepatocellular carcinoma by targeting NAP1L1[J]. Hepatology, 2018.[Epub ahead of print]
    [26] LIU S, DU Y, MA H, et al. Preclinical comparison of regorafenib and sorafenib efficacy for hepatocellular carcinoma using multimodality molecular imaging[J]. Cancer Lett, 2019, 453:74-83.
    [27] DENG H, SHANG W, LU G, et al. Targeted and multifunctional technology for identification between hepatocellular carcinoma and liver cirrhosis[J]. ACS Appl Mater Interfaces, 2019, 11 (16) :14526-14537.
    [28] FAN YQ, DONG SL. Recent advances in targeted drug therapy for hepatocellular carcinoma[J]. J Clin Hepatol, 2018, 34 (2) :424-428. (in Chinese) 樊永强, 董胜利.靶向药物治疗肝细胞癌的最新进展[J].临床肝胆病杂志, 2018, 34 (2) :424-428.
    [29] LIU Y, FENG J, SUN M, et al. Long noncoding RNA HULC activates HBV by modulating HBx/STAT3/miR-539/APOBEC3B signaling in HBV-related hepatocellular carcinoma[J]. Cancer letters, 2019, 454:158-170.
    [30] MUKHERJI S, EBERT MS, ZHENG GX, et al. MicroRNAs can generate thresholds in target gene expression[J]. Nat Genet, 2011, 43 (9) :854-859.
    [31] WEE LM, FLORES-JASSO CF, SALOMON WE, et al. Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties[J]. Cell, 2012, 151 (5) :1055-1067.
  • 加载中
计量
  • 文章访问数:  657
  • HTML全文浏览量:  22
  • PDF下载量:  772
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-15
  • 出版日期:  2019-08-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回