Role of oxidative stress and autophagy in the development and progression of hepatocellular carcinoma
-
摘要:
肝细胞癌(HCC)是肝脏的原发恶性肿瘤,其发生过程十分复杂,氧化应激学说是其发生发展机制研究的众多重要学说之一。自噬是细胞清除胞内错误折叠的蛋白质或受损细胞器,维持内环境稳态的重要方式。越来越多的证据显示自噬在肝纤维化和HCC中发挥重要作用,且与氧化应激有密切关系。结合当前国内外最新研究成果,分别从自噬与HCC的关系、氧化应激与HCC的关系来分析二者在HCC发病机制中的相互作用。指出自噬在HCC发病进程中调控氧化应激的分子机制可能成为今后的研究热点,若能够激活或阻断自噬调控氧化应激的某个关键通路,或可为HCC的早期诊断及治疗提供新的手段。
Abstract:Hepatocellular carcinoma( HCC) is a primary malignant tumor of the liver and has a complex pathogenesis. At present,the oxidative stress theory is one of the many important theories for the mechanism of the development and progression of this disease. Autophagy is an important way for cells to clear misfolded proteins or damaged organelles and maintain homeostasis of the internal environment. An increasing number of evidence has shown that autophagy plays an important role in liver fibrosis and HCC and is closely associated with oxidative stress. With reference to the latest research findings around the world,this article analyzes the interaction between autophagy and oxidative stress in the pathogenesis of HCC from the aspect of their relationship with HCC. It is pointed out that the molecular mechanism by which autophagy regulates oxidative stress in the development of HCC may become a research hotspot in the future; it may provide a new means for the early diagnosis and treatment of HCC to activate or block a key pathway through which autophagy regulates oxidative stress.
-
Key words:
- carcinoma,hepatocellular /
- autophagy /
- oxidative stress
-
[1] DYSON J,JAQUES B,CHATTOPADYHAY D,et al. Hepatocellular cancer:The impact of obesity,type 2 diabetes and a multidisciplinary team[J]. J Hepatol,2014,60(1):110-117. [2] HAMID AS,TESFAMARIAM IG,ZHANG Y,et al. Aflatoxin B1-induced hepatocellular carcinoma in developing countries:Geographical distribution,mechanism of action and prevention[J]. Oncol Lett,2013,5(4):1087-1092. [3] ZOLLER H,TILG H. Nonalcoholic fatty liver disease and hepatocellular carcinoma[J]. Metabolism,2016,65(8):1151-1160. [4] EL-SERAG HB,KANWAL F. Obesity and hepatocellular carcinoma:Hype and reality[J]. Hepatology,2014,60(3):779-781. [5] DEVENISH RJ,KLIONSKY DJ. Autophagy:Mechanism and physiological relevance ‘brewed’ from yeast studies[J].Front Biosci(Schol Ed),2012,4:1354-1363. [6] WANG MQ,LI YP,LIU LY,et al. Role and mechanism of autophagy in development and progression of hepatocellular carcinoma and regulation of immunotherapy[J]. J Clin Hepatol,2019,35(5):1129-1134.(in Chinese)王沐淇,李亚萍,刘拉羊,等.自噬在肝细胞癌发生发展和免疫治疗调控中的作用及其机制[J].临床肝胆病杂志,2019,35(5):1129-1134. [7] LI WX,WANG XC,XIANG MH,et al. Huaier inhibits proliferation and metastasis of liver cancer cells by inducing autophagy[J/CD]. Chin J Hepat Surg(Electronic Edition),2019,8(2):169-174.(in Chinese)黎文信,王喜城,向美焕,等.槐耳通过诱导自噬抑制肝癌细胞增殖与迁移[J/CD].中华肝脏外科手术学电子杂志,2019,8(2):169-174. [8] LIN T,SHA YQ,CHEN ZX. Advances in vitro studies on induction of autophagy in hepatocellular carcinoma by active ingredients of traditional Chinese medicine[J]. China Med Herald,2018,15(34):49-52,56.(in Chinese)林彤,沙永强,陈泽雄.中药活性成分诱导肝细胞癌自噬的体外实验研究进展[J].中国医药导报,2018,15(34):49-52,56. [9] YAZDANI HO,HUANG H,TSUNG A. Autophagy:Dual response in the development of hepatocellular carcinoma[J].Cells,2019,8(2):91. [10] GALLUZZI L,PIETROCOLA F,BRAVO-SAN PEDRO JM,et al.Autophagy in malignant transformation and cancer progression[J]. EMBO J,2015,34(7):856-880. [11] WANG X,DENG Q,FENG K,et al. Insufficient radiofrequency ablation promotes hepatocellular carcinoma cell progression via autophagy and the CD133 feedback loop[J]. Oncol Rep,2018,40(1):241-251. [12] CICCARONE F,CASTELLI S,CIRIOLO MR. Oxidative stress-driven autophagy acROSs onset and therapeutic outcome in hepatocellular carcinoma[J]. Oxid Med Cell Longev,2019,2019:6050123. [13] SAITOH T,FUJITA N,JANG MH,et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production[J]. Nature,2008,456(7219):264-268. [14] WANG L,LI H,ZHEN Z,et al. CXCL17 promotes cell metastasis and inhibits autophagy via the LKB1-AMPK pathway in hepatocellular carcinoma[J]. Gene,2019,690:129-136. [15] YUE Z,JIN S,YANG C,et al. Beclin 1,an autophagy gene essential for early embryonic development,is a haploinsufficient tumor suppressor[J]. Proc Natl Acad Sci U S A,2003,100(25):15077-15082. [16] TAKAMURA A,KOMATSU M,HARA T,et al. Autophagydeficient mice develop multiple liver tumors[J]. Genes Dev,2011,25(8):795-800. [17] WU FQ,FANG T,YU LX,et al. ADRB2 signaling promotes HCC progression and sorafenib resistance by inhibiting autophagic degradation of HIF1α[J]. J Hepatol,2016,65(2):314-324. [18] LI P,DU Q,CAO Z,et al. Interferon-γinduces autophagy with growth inhibition and cell death in human hepatocellular carcinoma(HCC)cells through interferon-regulatory factor-1(IRF-1)[J]. Cancer Lett,2012,314(2):213-222. [19] CHANG Y,YAN W,HE X,et al. miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions[J]. Gastroenterology,2012,143(1):177-187. [20] ZHANG H,ZHANG Y,ZHU X,et al. DEAD box protein 5 inhibits liver tumorigenesis by stimulating autophagy via interaction with p62/SQSTM1[J]. Hepatology,2019,69(3):1046-1063. [21] ZHAO M,YANG M,YANG L,et al. HMGB1 regulates autophagy through increasing transcriptional activities of JNK and ERK in human myeloid leukemia cells[J]. BMB Rep,2011,44(9):601-606. [22] LIU Y,YAN W,TOHME S,et al. Hypoxia induced HMGB1and mitochondrial DNA interactions mediate tumor growth in hepatocellular carcinoma through Toll-like receptor 9[J]. J Hepatol,2015,63(1):114-121. [23] SHARIFI MN,MOWERS EE,DRAKE LE,et al. Autophagy promotes focal adhesion disassembly and cell motility of metastatic tumor cells through the direct interaction of paxillin with LC3[J]. Cell Rep,2016,15(8):1660-1672. [24] PENG YF,SHI YH,DING ZB,et al. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells[J]. Autophagy,2013,9(12):2056-2068. [25] WANG X,ZHANG Y,FENG T,et al. Fluid shear stress promotes autophagy in hepatocellular carcinoma cells[J]. Int J Biol Sci,2018,14(10):1277-1290. [26] AQUILANO K,BALDELLI S,CIRIOLO MR. Glutathione:New roles in redox signaling for an old antioxidant[J]. Front Pharmacol,2014,5:196. [27] DIAO Y,LIU W,WONG CC,et al. Oxidation-induced intramolecular disulfide bond inactivates mitogen-activated protein kinase kinase 6 by inhibiting ATP binding[J]. Proc Natl Acad Sci U S A,2010,107(49):20974-20979. [28] JUNG SY,KIM YJ. C-terminal region of HBx is crucial for mitochondrial DNA damage[J]. Cancer Lett,2013,331(1):76-83. [29] PAL S,POLYAK SJ,BANO N,et al. Hepatitis C virus induces oxidative stress,DNA damage and modulates the DNA repair enzyme NEIL1[J]. J Gastroenterol Hepatol,2010,25(3):627-634. [30] ARTEEL GE,IIMURO Y,YIN M,et al. Chronic enteral ethanol treatment causes hypoxia in rat liver tissue in vivo[J]. Hepatology,1997,25(4):920-926. [31] di LEO L,VEGLIANTE R,CICCARONE F,et al. Forcing ATGL expression in hepatocarcinoma cells imposes glycolytic rewiring through PPAR-α/p300-mediated acetylation of p53[J]. Oncogene,2019,38(11):1860-1875. [32] LIM SO,GU JM,KIM MS,et al. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma:Methylation of the E-cadherin promoter[J]. Gastroenterology,2008,135(6):2128-2140. [33] NI HM,WOOLBRIGHT BL,WILLIAMS J,et al. Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy[J]. J Hepatol,2014,61(3):617-625. [34] DU H,YANG W,CHEN L,et al. Emerging role of autophagy during ischemia-hypoxia and reperfusion in hepatocellular carcinoma[J]. Int J Oncol,2012,40(6):2049-2057. [35] ZHANG J,NEY PA. Role of BNIP3 and NIX in cell death,autophagy,and mitophagy[J]. Cell Death Differ,2009,16(7):939-946. [36] WILLIAMS JA,NI HM,DING Y,et al. Parkin regulates mitophagy and mitochondrial function to protect against alcohol-induced liver injury and steatosis in mice[J]. Am J Physiol Gastrointest Liver Physiol,2015,309(5):g324-g340. [37] EID N,ITO Y,HORIBE A,et al. Ethanol-induced mitophagy in liver is associated with activation of the PINK1-Parkin pathway triggered by oxidative DNA damage[J]. Histol Histopathol,2016,31(10):1143-1159. [38] MAHLI A,THASLER WE,PATSENKER E,et al. Identification of cytochrome CYP2E1 as critical mediator of synergistic effects of alcohol and cellular lipid accumulation in hepatocytes in vitro[J]. Oncotarget,2015,6(39):41464-41478. [39] DASARI SK,BIALIK S,LEVIN-ZAIDMAN S,et al. Signalome-wide RNAi screen identifies GBA1 as a positive mediator of autophagic cell death[J]. Cell Death Differ,2017,24(7):1288-1302. [40] HUANG Q,ZHAN L,CAO H,et al. Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways[J]. Autophagy,2016,12(6):999-1014. [41] LI L,CHEN Y,GIBSON SB. Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation[J]. Cell Signal,2013,25(1):50-65. [42] DESIDERI E,VEGLIANTE R,CARDACI S,et al. MAPK14/p38α-dependent modulation of glucose metabolism affects ROS levels and autophagy during starvation[J]. Autophagy,2014,10(9):1652-1665. [43] BARTOLINI D,DALLAGLIO K,TORQUATO P,et al. Nrf2-p62autophagy pathway and its response to oxidative stress in hepatocellular carcinoma[J]. Transl Res,2018,193:54-71. 期刊类型引用(31)
1. 丁辉,苏雪梅,张蓉. 子宫内膜异位症患者血清GP73和SMAD2表达水平及临床价值研究. 现代检验医学杂志. 2025(01): 122-126+131 . 百度学术
2. 王慧敏,谭炳芹,王万鹏,吴梦雪. 慢性乙型肝炎病毒感染相关肝病患者血清高尔基体蛋白73水平变化分析. 山东医药. 2025(01): 100-103+108 . 百度学术
3. 张璨,张欢欢,高飞,任佩佩,罗明阳,闫冬,王馨,王莹莹,曾艳丽. 血清高尔基体蛋白73联合肝脏硬度评估慢性乙型肝炎病毒感染患者肝纤维化进展的价值. 中华实用诊断与治疗杂志. 2024(10): 1013-1018 . 百度学术
4. 李述美,刘冰,刘仁伟,杨洁. GP73、IL-2R、miR-21预测慢性乙肝患者显著肝纤维化的临床价值. 重庆医学. 2024(23): 3575-3580 . 百度学术
5. 安薪宇,乔杰,胡灵溪,王荣琦,南月敏. GP73对慢性肝病患者肝纤维化诊断价值的研究. 中华内科杂志. 2023(01): 49-53 . 百度学术
6. 张航,刘近春. 血清高尔基体蛋白73在非酒精性脂肪性肝病中的作用. 临床肝胆病杂志. 2023(03): 657-662 . 本站查看
7. 马杨青,范海纳,孙鑫,刘成海. 高尔基体蛋白73(GP73)对慢性肝病的诊断价值. 临床肝胆病杂志. 2023(08): 1999-2004 . 本站查看
8. 张欢,雷学忠. 新型血清标志物高尔基体蛋白73在慢性乙型肝炎临床诊治中的研究进展. 华西医学. 2023(08): 1243-1246 . 百度学术
9. 陈腾千,姜丽华,张生君,蒋义贵,罗佳,胡永敏,尤丽财. 高尔基体蛋白73在非酒精性脂肪性肝病中的应用价值. 黑龙江医学. 2023(17): 2053-2055+2059 . 百度学术
10. 李雨蓉,姚明解,王杰. 序贯无创检测提高肝纤维化筛查效率. 肝脏. 2023(10): 1146-1149 . 百度学术
11. 刘燕娜,姚明解,郑素军,陈香梅,刘向祎,胡鹏,欧启水,窦晓光,陈红松,段钟平,侯金林,南月敏,高志良,徐小元,庄辉,鲁凤民. 血清高尔基体蛋白73在慢性肝病患者中的临床应用. 中华肝脏病杂志. 2022(01): 4-8 . 百度学术
12. 裴倩云,孙颖. 血清免疫球蛋白检验在肝衰竭患者的诊断价值. 系统医学. 2022(15): 103-105+118 . 百度学术
13. 王鹏飞,刘树红,钱相君,翟相威,文夏杰,姚明解,赵景民,鲁凤民. 血清高尔基体蛋白73对丙型肝炎肝硬化的诊断价值研究. 中华肝脏病杂志. 2022(08): 879-884 . 百度学术
14. 郑伟明,罗翠转,卢金英,骆晓豪,刘浩,梁栋伟. 血过氧化物酶增殖体激活受体γ与慢性乙型肝炎患者炎症的相关性. 中国肝脏病杂志(电子版). 2022(04): 42-47 . 百度学术
15. 庄云英,张海燕,曾清芳. 慢性乙型肝炎肝纤维化的无创诊断研究进展. 肝脏. 2021(01): 84-87 . 百度学术
16. 刘燕娜,姚明解,鲁凤民. 慢性肝病患者中血清高尔基体蛋白73的临床应用. 肝脏. 2021(02): 103-106 . 百度学术
17. Application of serum Golgi protein-73 in the management of chronic liver disease. 中华医学杂志英文版. 2021(07): 777-779 . 百度学术
18. 罗双艳,何颖. 慢性乙肝患者肝脏炎症及纤维化的影响因素及其与血清高尔基体蛋白73的相关性. 医学信息. 2021(15): 5-8 . 百度学术
19. 高伟,高虹,尹春梅,杨森林,范晓红,刘春亮,李雪卿,贾妮娜. 血清GP73与p62测定对HBV相关慢加急性肝衰竭患者短期预后的预测价值比较. 中华肝脏病杂志. 2021(09): 855-860 . 百度学术
20. 王一奇,苑喜微,李冬冬,汤玉会,薛宁宁,崔璐瑶,刘领弟,南月敏. 血浆高尔基体蛋白73及相关模型诊断非酒精性脂肪性肝病的研究. 中华肝脏病杂志. 2021(12): 1170-1176 . 百度学术
21. 张春林. 患儿脓毒症继发肝损伤的危险因素及血清高尔基体跨膜糖蛋白73、微小RNA-122a水平变化. 中国临床医生杂志. 2020(02): 236-238 . 百度学术
22. 刘沁雨,常越,张青,丁玉平,李海. 高尔基体蛋白73对抗病毒治疗慢性乙型肝炎患者代偿期肝硬化的诊断价值. 解放军医药杂志. 2020(03): 86-91 . 百度学术
23. 翟相威,刘树红,姚明解,钱相君,文夏杰,许强,赵景民,鲁凤民. 基于血清高尔基体蛋白73的代偿期乙型肝炎肝硬化无创诊断模型的建立及初步应用. 中华肝脏病杂志. 2020(01): 47-52 . 百度学术
24. 范旭,单珊,刘立伟,贾继东. 血清高尔基糖蛋白73优于APRI、FIB-4对慢性HBV感染患者显著纤维化的诊断. 现代消化及介入诊疗. 2020(04): 529-532 . 百度学术
25. 范旭,单珊,刘立伟,贾继东. 血清高尔基体跨膜糖73蛋白及其他生物标志物联合检测在AFP阴性小肝癌诊断中的意义. 现代消化及介入诊疗. 2020(04): 435-439+443 . 百度学术
26. 刘沁雨,常越,张文,张青,卢诚震,李海. GP73预测慢性乙型肝炎患者肝硬化进展研究. 武警医学. 2020(04): 317-323 . 百度学术
27. 马玲玉,甄一宁,罗云萍,段昭君. gp73在小鼠肝纤维化肝组织中的表达及机制. 基础医学与临床. 2020(06): 771-776 . 百度学术
28. 刘沁雨,常越,张青,丁玉平,李海. 血清GP73与PYGO2对已长期抗病毒治疗慢性乙型肝炎肝硬化的诊断价值. 山东医药. 2020(29): 64-66 . 百度学术
29. 李佳娜,郑瑞琦,李娜,胡玉琳. 高尔基体蛋白73的生物学特征及在肝纤维化和肝硬化中的诊断价值. 临床肝胆病杂志. 2019(06): 1361-1364 . 本站查看
30. 王春艳,纪冬,马丽君,陈松海,王晶晶,邵清,陈国凤,韩萍. 慢性乙型肝炎患者血清高尔基体蛋白73及其与肝脏炎症及纤维化的相关性. 解放军医学杂志. 2019(06): 503-507 . 百度学术
31. 宋莹,李世朋,焦伟伟. 血清HMGB1、TGFβ1及GP73检测对脓毒症并发肝损伤预后的评估价值. 分子诊断与治疗杂志. 2019(06): 457-461 . 百度学术
其他类型引用(12)
-