中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

microRNA-335在慢性肝病中的作用

袁亚杰 丁豪杰 孔庆明

引用本文:
Citation:

microRNA-335在慢性肝病中的作用

DOI: 10.3969/j.issn.1001-5256.2021.02.047
基金项目: 

国家自然科学基金 (31501050);

浙江省青山湖联合基金 (QY19H190002)

作者贡献声明:袁亚杰负责资料收集和撰写论文;丁豪杰参与收集数据和论文修改;孔庆明负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    作者简介:

    袁亚杰(1994—),女,主要从事分子寄生虫学研究

    通信作者:

    孔庆明,15168280576@163.com

  • 中图分类号: R575

Role of microRNA-335 in chronic liver diseases

  • 摘要: 近年来,microRNA(miRNA)在肝脏病理过程中的调控作用备受关注。在病毒性及脂肪性肝炎中, miRNA-335通过Y盒上的性别决定区(SOX)4转录因子调控肝炎进展;在进展性肝纤维化及肝癌发生发展过程中,miRNA-335通过缺氧诱导因子1α、磷酸酶和紧张素同系物、靶向Rho蛋白激酶1、纤溶酶原激活物抑制剂1、碱性螺旋-环-螺旋转录因子家族1及间质-上皮细胞转化因子等靶基因调控肝脏中胶原的产生、沉积和降解,从而调控肝星状细胞或肝癌细胞的迁移和侵袭等生物学行为。主要归纳了近几年报道的miRNA-335在肝炎、肝纤维化和肝癌中作用的研究进展,同时,结合现有研究,提出miRNA-335/巯基氧化酶1调控轴可能通过抑制肝星状细胞活化介导青蒿琥酯抗血吸虫性肝纤维化的猜想,以期为抗肝纤维化及其他肝病治疗提供新思路。

     

  • 图  1  miRNA-335及其宿主基因MEST[5]

    图  2  miRNA-335与肝炎

    注:,上调或促进作用;,下调或抑制作用;,尚未在肝病中证实;棕色代表已在肝病中证实。

    图  3  miRNA-335与肝纤维化

    注:,上调或促进作用;,下调或抑制作用;,尚未在肝病中证实;棕色和深蓝色分别代表已在肝病和非肝病中证实。

    图  4  miRNA-335与肝癌

    注:,上调或促进作用;,下调或抑制作用;棕色和深蓝色分别代表已在肝病和非肝病中证实。

  • [1] THOMAS DL. Global elimination of chronic hepatitis[J]. N Engl J Med, 2019, 380(21): 2041-2050. DOI: 10.1056/NEJMra1810477
    [2] SARIN SK, KUMAR M, ESLAM M, et al. Liver diseases in the Asia-Pacific region: A lancet gastroenterology & hepatology commission[J]. Lancet Gastroenterol Hepatol, 2020, 5(2): 167-228. DOI: 10.1016/S2468-1253(19)30342-5
    [3] ESTES C, ANSTEE QM, ARIAS-LOSTE MT, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030[J]. J Hepatol, 2018, 69(4): 896-904. DOI: 10.1016/j.jhep.2018.05.036
    [4] SEKI E, BRENNER DA. Recent advancement of molecular mechanisms of liver fibrosis[J]. J Hepatobiliary Pancreat Sci, 2015, 22(7): 512-518. DOI: 10.1002/jhbp.245
    [5] DOHI O, YASUI K, GEN Y, et al. Epigenetic silencing of miR-335 and its host gene MEST in hepatocellular carcinoma[J]. Int J Oncol, 2013, 42(2): 411-418. DOI: 10.3892/ijo.2012.1724
    [6] SHANG J, ZHENG Y, GUO X, et al. Hepatitis B virus replication and sex-determining region Y box 4 production are tightly controlled by a novel positive feedback mechanism[J]. Sci Rep, 2015, 5: 10066. DOI: 10.1038/srep10066
    [7] HAN S, TANG Q, LU X, et al. Dysregulation of hepatic microRNA expression profiles with Clonorchis sinensis infection[J]. BMC Infect Dis, 2016, 16(1): 724. DOI: 10.1186/s12879-016-2058-1
    [8] CHEN C, WU CQ, ZHANG ZQ, et al. Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation[J]. Exp Cell Res, 2011, 317(12): 1714-1725. DOI: 10.1016/j.yexcr.2011.05.001
    [9] LIU H, LI W, CHEN C, et al. MiR-335 acts as a potential tumor suppressor miRNA via downregulating ROCK1 expression in hepatocellular carcinoma[J]. Tumour Biol, 2015, 36(8): 6313-6319. DOI: 10.1007/s13277-015-3317-2
    [10] YIN C. Molecular mechanisms of Sox transcription factors during the development of liver, bile duct, and pancreas[J]. Semin Cell Dev Biol, 2017, 63: 68-78. DOI: 10.1016/j.semcdb.2016.08.015
    [11] JIAO Y, ZHAO J, ZHANG Z, et al. SRY-Box containing gene 4 promotes liver steatosis by upregulation of SREBP-1c[J]. Diabetes, 2018, 67(11): 2227-2238. DOI: 10.2337/db18-0184
    [12] NAKANISHI N, NAKAGAWA Y, TOKUSHIGE N, et al. The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice[J]. Biochem Biophys Res Commun, 2009, 385(4): 492-496. DOI: 10.1016/j.bbrc.2009.05.058
    [13] OISHI Y, SPANN NJ, LINK VM, et al. SREBP1 contributes to resolution of pro-inflammatory TLR4 signaling by reprogramming fatty acid metabolism[J]. Cell Metab, 2017, 25(2): 412-427. DOI: 10.1016/j.cmet.2016.11.009
    [14] WANG X, MAO W, FANG C, et al. Dusp14 protects against hepatic ischaemia-reperfusion injury via Tak1 suppression[J]. J Hepatol, 2018, 68(1): 118-129. DOI: 10.1016/j.jhep.2017.08.032
    [15] HU J, ZHU XH, ZHANG XJ, et al. Targeting TRAF3 signaling protects against hepatic ischemia/reperfusions injury[J]. J Hepatol, 2016, 64(1): 146-159. DOI: 10.1016/j.jhep.2015.08.021
    [16] WANG PX, ZHANG XJ, LUO P, et al. Hepatocyte TRAF3 promotes liver steatosis and systemic insulin resistance through targeting TAK1-dependent signalling[J]. Nat Commun, 2016, 7: 10592. DOI: 10.1038/ncomms10592
    [17] BAO CX, ZHANG DX, WANG NN, et al. MicroRNA-335-5p suppresses lower extremity deep venous thrombosis by targeted inhibition of PAI-1 via the TLR4 signalingpathway[J]. J Cell Biochem, 2018, 119(6): 4692-4710. DOI: 10.1002/jcb.26647
    [18] LIU FJ, KAUR P, KAROLINA DS, et al. MiR-335 regulates Hif-1α to reduce cell death in both mouse cell line and rat ischemic models[J]. PLoS One, 2015, 10(6): e0128432. DOI: 10.1371/journal.pone.0128432
    [19] KABIR TD, LEIGH RJ, TASENA H, et al. A miR-335/COX-2/PTEN axis regulates the secretory phenotype of senescent cancer-associated fibroblasts[J]. Aging (Albany NY), 2016, 8(8): 1608-1635. DOI: 10.18632/aging.100987
    [20] HU Y, HU D, YU H, et al. Hypoxia-inducible factor 1α and ROCK1 regulate proliferation and collagen synthesis in hepatic stellate cells under hypoxia[J]. Mol Med Rep, 2018, 18(4): 3997-4003. http://www.ncbi.nlm.nih.gov/pubmed/30132575
    [21] ZHANG F, HAO M, JIN H, et al. Canonical hedgehog signalling regulates hepatic stellate cell-mediated angiogenesis in liver fibrosis[J]. Br J Pharmacol, 2017, 174(5): 409-423. DOI: 10.1111/bph.13701
    [22] HAN J, HE Y, ZHAO H, et al. Hypoxia inducible factor-1 promotes liver fibrosis in nonalcoholic fatty liver disease by activating PTEN/p65 signaling pathway[J]. J Cell Biochem, 2019, 120(9): 14735-14744. DOI: 10.1002/jcb.28734
    [23] WEI S, ZHOU H, WANG Q, et al. RIP3 deficiency alleviates liver fibrosis by inhibiting ROCK1-TLR4-NF-κB pathway in macrophages[J]. FASEB J, 2019, 33(10): 11180-11193. DOI: 10.1096/fj.201900752R
    [24] SHI CY, FAN Y, LIU B, et al. HIF1 contributes to hypoxia-induced pancreatic cancer cells invasion via promoting QSOX1 expression[J]. Cell Physiol Biochem, 2013, 32(3): 561-568. DOI: 10.1159/000354460
    [25] KATCHMAN BA, ANTWI K, HOSTETTER G, et al. Quiescin sulfhydryl oxidase 1 promotes invasion of pancreatic tumor cells mediated by matrix metalloproteinases[J]. Mol Cancer Res, 2011, 9(12): 1621-1631. DOI: 10.1158/1541-7786.MCR-11-0018
    [26] YANG JW, HIEN TT, LIM SC, et al. Pin1 induction in the fibrotic liver and its roles in TGF-β1 expression and Smad2/3 phosphorylation[J]. J Hepatol, 2014, 60(6): 1235-1241. DOI: 10.1016/j.jhep.2014.02.004
    [27] FLEVARIS P, VAUGHAN D. The role of plasminogen activator inhibitor type-1 in fibrosis[J]. Semin Thromb Hemost, 2017, 43(2): 169-177. http://d.wanfangdata.com.cn/periodical/82f79194318957c4b32216c05179ee37
    [28] WANG J, WANG X, LIU F, et al. microRNA-335 inhibits colorectal cancer HCT116 cells growth and epithelial-mesenchymal transition (EMT) process by targeting Twist1[J]. Pharmazie, 2017, 72(8): 475-481. http://www.ncbi.nlm.nih.gov/pubmed/29441907
    [29] YEO SY, LEE KW, SHIN D, et al. A positive feedback loop bi-stably activates fibroblasts[J]. Nat Commun, 2018, 9(1): 3016. DOI: 10.1038/s41467-018-05274-6
    [30] LI Z, CHEN B, DONG W, et al. MKL1 promotes endothelial-to-mesenchymal transition and liver fibrosis by activating TWIST1 transcription[J]. Cell Death Dis, 2019, 10(12): 899. DOI: 10.1038/s41419-019-2101-4
    [31] REN J, ZHANG J, RUDEMILLER NP, et al. Twist1 in infiltrating macrophages attenuates kidney fibrosis via matrix metallopeptidase 13-mediated matrix degradation[J]. J Am Soc Nephrol, 2019, 30(9): 1674-1685. DOI: 10.1681/ASN.2018121253
    [32] CHEN S, XIA X. Long noncoding RNA NEAT1 suppresses sorafenib sensitivity of hepatocellular carcinoma cells via regulating miR-335-c-Met[J]. J Cell Physiol, 2019.[Epub ahead of print]
    [33] BOUATTOUR M, RAYMOND E, QIN S, et al. Recent developments of c-Met as a therapeutic target in hepatocellular carcinoma[J]. Hepatology, 2018, 67(3): 1132-1149. DOI: 10.1002/hep.29496
    [34] HU J, CHE L, LI L, et al. Co-activation of AKT and c-Met triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice[J]. Sci Rep, 2016, 6: 20484. DOI: 10.1038/srep20484
    [35] YOU H, DING W, DANG H, et al. c-Met represents a potential therapeutic target for personalized treatment in hepatocellular carcinoma[J]. Hepatology, 2011, 54(3): 879-889. DOI: 10.1002/hep.24450
    [36] YOO BK, GREDLER R, CHEN D, et al. c-Met activation through a novel pathway involving osteopontin mediates oncogenesis by the transcription factor LSF[J]. J Hepatol, 2011, 55(6): 1317-1324. DOI: 10.1016/j.jhep.2011.02.036
    [37] LI L, PILO GM, LI X, et al. Inactivation of fatty acid synthase impairs hepatocarcinogenesis driven by AKT in mice and humans[J]. J Hepatol, 2016, 64(2): 333-341. DOI: 10.1016/j.jhep.2015.10.004
    [38] WANG RK, SHAO XM, YANG JP, et al. MicroRNA-145 inhibits proliferation and promotes apoptosis of HepG2 cells by targeting ROCK1 through the ROCK1/NF-κB signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23(7): 2777-2785. http://www.ncbi.nlm.nih.gov/pubmed/31002128
    [39] WANG Y, ZENG XD, WANG NN, et al. Long noncoding RNA DANCR, working as a competitive endogenous RNA, promotes ROCK1-mediated proliferation and metastasis via decoying of miR-335-5p and miR-1972 in osteosarcoma[J]. Mol Cancer, 2018, 17(1): 89. DOI: 10.1186/s12943-018-0837-6
    [40] LIANG H, ZHANG C, GUAN H, et al. LncRNA DANCR promotes cervical cancer progression by upregulating ROCK1 via sponging miR-335-5p[J]. J Cell Physiol, 2019, 234(5): 7266-7278. DOI: 10.1002/jcp.27484
    [41] GUO D, LI Y, CHEN Y, et al. DANCR promotes HCC progression and regulates EMT by sponging miR-27a-3p via ROCK1/LIMK1/COFILIN1 pathway[J]. Cell Prolif, 2019, 52(4): e12628.
    [42] MENG J, CHEN S, HAN JX, et al. Twist1 regulates vimentin through Cul2 circular RNA to promote EMT in hepatocellular carcinoma[J]. Cancer Res, 2018, 78(15): 4150-4162. DOI: 10.1158/0008-5472.CAN-17-3009
    [43] XIAO T, ZHANG Q, ZONG S, et al. Protease-activated receptor-1 (PAR1) promotes epithelial-endothelial transition through Twist1 in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2018, 37(1): 185. DOI: 10.1186/s13046-018-0858-4
    [44] YIN J, WANG L, ZHU JM, et al. Prp19 facilitates invasion of hepatocellular carcinoma via p38 mitogen-activated protein kinase/twist1 pathway[J]. Oncotarget, 2016, 7(16): 21939-21951. DOI: 10.18632/oncotarget.7877
    [45] YALIM-CAMCI I, BALCIK-ERCIN P, CETIN M, et al. ETS1 is coexpressed with ZEB2 and mediates ZEB2-induced epithelial-mesenchymal transition in human tumors[J]. Mol Carcinog, 2019, 58(6): 1068-1081. DOI: 10.1002/mc.22994
    [46] KAN QE, SU Y, YANG HH. MicroRNA-335 is downregulated in papillary thyroid cancer and suppresses cancer cell growth, migration and invasion by directly targeting ZEB2[J]. Oncol Lett, 2017, 14(6): 7622-7628. http://www.researchgate.net/publication/320190432_MicroRNA-335_is_downregulated_in_papillary_thyroid_cancer_and_suppresses_cancer_cell_growth_migration_and_invasion_by_directly_targeting_ZEB2
    [47] WANG F, LI L, PIONTEK K, et al. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma[J]. Hepatology, 2018, 67(3): 940-954. DOI: 10.1002/hep.29586
    [48] DU WW, TANG HC, LEI Z, et al. miR-335-5p inhibits TGF-beta1-induced epithelial-mesenchymal transition in non-small cell lung cancer via ROCK1[J]. Respir Res, 2019, 20(1): 225. DOI: 10.1186/s12931-019-1184-x
    [49] SUN ZF, ZHANG Z, LIU ZD, et al. MicroRNA-335 inhibits invasion and metastasis of colorectal cancer by targeting ZEB2[J]. Med Oncol, 2014, 31(6): 982. DOI: 10.1007/s12032-014-0982-8
  • 加载中
图(4)
计量
  • 文章访问数:  594
  • HTML全文浏览量:  103
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-28
  • 录用日期:  2020-08-31
  • 出版日期:  2021-02-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回