基于瞬时弹性成像技术检测参数的非酒精性脂肪性肝病进展评估模型的建立
DOI: 10.3969/j.issn.1001-5256.2021.07.027
Establishment of a model for evaluating the severity of nonalcoholic fatty liver disease based on transient elastography parameters
-
摘要:
目的 通过对基于瞬时弹性成像技术检测参数联合分析,建立对非酒精性脂肪性肝病(NAFLD)病情严重程度的评估模型。 方法 回顾性收集2014年7月—2017年7月在我国7家医院就诊的具有肝穿刺病理学诊断的184例NAFLD患者的临床信息及肝弹性相关参数。将iLivTouch肝弹性检测参数得到的和弹性、超声信号的幅度、频率、散射及衰减程度相关的多参数分别命名为P1~P18。通过Spearman相关性检验、线性回归分析分别建立用于NAFLD患者脂肪变程度、炎症活动度、肝纤维化程度判断模型,使用受试者工作特征曲线(ROC曲线)对模型诊断价值进行评价。 结果 基于瞬时弹性成像技术的相关超声参数与NAFLD患者肝脂肪变、炎症活动度与肝纤维化程度有良好的相关性。多因素分析结果显示,P1、P12是肝脂肪变程度的独立相关指标(P值均<0.05),P1、P3、P6、P11是肝脏炎症活动度的独立相关指标(P值均<0.05),P2、P3与肝纤维化程度显著相关(P值均<0.05)。通过线性回归建立的肝脂肪变程度判断模型:Y=0.013×P1+0.055×P12-0.318 5,对轻度及中重度脂肪变诊断的ROC曲线下面积(AUC)分别为0.895(95%CI:0.842~0.936)、0.939(95%CI:0.894~0.969),敏感度分别为82.35%、86.26%,特异度分别为89.23%、93.27%,P值均<0.001;肝脏炎症活动度诊断模型:Y=0.008×P1+0.030×P3+0.029×P6-1.875×10-4×P11+0.416,对早期炎症及显著炎症活动诊断的AUC分别为0.828(95%CI:0.793~0.865)、0.874(95%CI:0.817~0.918),敏感度分别为70.6%、73.96%,特异度分别为85.7%、93.33%,P值均<0.001;肝纤维化程度诊断模型:Y=-0.003×P1+0.601×(lnP2)+0.285×(lnP3)+0.036×P15+0.078,对显著纤维化、严重纤维化及早期肝硬化诊断的AUC分别为0.805(95%CI:0.740~0.869)、0.767(95%CI:0.699~0.827)、0.803(95%CI:0.701~0.906),敏感度分别为72.27%、77.63%和90.00%,特异度分别为79.69%、66.42%和66.47%,P值均<0.001。 结论 瞬时弹性成像技术检测不同参数能够分别有效反映NAFLD患者脂肪变程度、炎症活动度及纤维化程度,通过联合模型能够提高对NAFLD患者疾病严重程度判断的准确性。 Abstract:Objective To establish a model for evaluating the severity of nonalcoholic fatty liver disease (NAFLD) based on a combined analysis of transient elastography parameters. Methods A retrospective analysis was performed for the clinical information and liver elasticity parameters of 184 NAFLD patients who attended 7 hospitals in China from July 2014 to July 2017 and underwent liver biopsy for pathological diagnosis. Liver elasticity parameters were named as P1-P18 according to the amplitude, frequency, dispersion, and attenuation of ultrasound signals. The Spearman rank correlation test and the linear regression analysis were used to establish the models for evaluating steatosis degree, inflammatory activity, and fibrosis degree, and the receiver operating characteristic (ROC) curve was used to evaluate the value of each diagnostic model. Results The ultrasound parameters based on transient elastography were well correlated with steatosis degree, inflammatory activity, and liver fibrosis degree in NAFLD patients. The multivariate analysis showed that P1 and P12 were independent indicators for predicting steatosis degree; P1, P3, P6, and P11 were independent indicators for predicting inflammatory activity; P2 and P3 were significantly correlated with liver fibrosis degree. The model Y=0.013×P1+0.055×P12-0.318 5 for predicting steatosis degree established based on linear regression had an area under the ROC curve (AUC) of 0.895 (95% confidence interval [CI]: 0.842-0.936) and 0.939 (95%CI: 0.894-0.969), respectively, in the diagnosis of mild steatosis and moderate-to-severe steatosis, with a sensitivity of 82.35% and 86.26%, respectively, and a specificity of 89.23% and 93.27%, respectively (P < 0.001). The model Y=0.008×P1+0.030×P3+0.029×P6-1.875×10-4×P11+0.416 for predicting inflammatory activity had an AUC of 0.828 (95%CI: 0.793-0.865) and 0.874 (95%CI: 0.817-0.918), respectively, in the diagnosis of early-stage inflammation and significant inflammation, with a sensitivity of 70.6% and 73.96%, respectively, and a specificity of 85.7% and 93.33%, respectively (P < 0.001). The model Y=-0.003×P1 + 0.601×(lnP2)+0.285×(lnP3)+0.036×P15 + 0.078 for predicting liver fibrosis degree had an AUC of 0.805 (95%CI: 0.740-0.869), 0.767 (95%CI: 0.699-0.827), and 0.803 (95%CI: 0.701-0.906), respectively, in the diagnosis of significant fibrosis, severe fibrosis, and early liver cirrhosis, with a sensitivity of 72.27%, 77.63%, and 90.00%, respectively, and a specificity of 79.69%, 66.42%, and 66.47%, respectively (P < 0.001). Conclusion Different parameters of transient elastography can effectively reflect steatosis degree, inflammatory activity, and fibrosis degree in NAFLD patients, and a combined model can improve the accuracy of disease severity prediction in NAFLD patients. -
表 1 研究对象的一般情况
指标 数值 男/女(例) 114/70 年龄(岁) 40 (26~51) ALT(U/L) 53(29~97) AST(U/L) 41(26~60) GGT(U/L) 54(31~98) 脂肪变评分(0/1/2/3,例) 65/39/48/32 气球样变评分(0/1/2,例) 22/47/115 小叶炎症评分(0/1/2,例) 16/70/98 纤维化评分(0/1/2/3/4,例)1) 25/38/43/65/10 注:1)纤维化评分有3例研究对象缺失,在后期有关纤维化模型构建中未纳入研究。 表 2 超声参数与NAFLD人群脂肪变程度、炎症活动度及肝纤维化程度相关性分析
变量 脂肪变程度 炎症活动度 肝纤维化程度 r值 P值 r值 P值 r值 P值 P1 0.748 <0.001 0.154 0.037 -0.068 0.358 P2 -0.014 0.849 0.161 0.029 0.510 <0.001 P3 0.003 0.969 0.241 0.001 0.476 <0.001 P4 0.578 <0.001 0.078 0.293 -0.008 0.918 P5 0.334 <0.001 0.186 0.011 0.100 0.177 P6 0.469 <0.001 0.271 <0.001 0.123 0.097 P7 0.653 <0.001 0.065 0.382 -0.047 0.527 P8=P10 0.680 <0.001 0.111 0.133 0.101 0.174 P9 0.649 <0.001 0.091 0.221 -0.032 0.665 P11 0.714 <0.001 0.1331 0.071 0.075 0.312 P12 0.677 <0.001 0.116 0.118 0.107 0.105 P14 0.513 <0.001 0.094 0.203 -0.012 0.871 P15=P17 0.521 <0.001 0.117 0.115 0.113 0.128 P16 0.669 <0.001 0.103 0.162 -0.029 0.700 P18 0.694 <0.001 0.085 0.250 -0.012 0.868 表 3 线性回归判定对于NAFLD人群脂肪变程度具有预测价值的参数
参数 B值 SE t值 P值 常量 -3.185 0.293 -11.455 <0.001 P1 0.013 0.001 8.670 <0.001 P12 0.055 0.013 0.277 <0.001 表 4 线性回归判定对于NAFLD人群肝脏炎症活动度具有预测价值的参数
参数 B值 SE t值 P值 常量 0.416 0.590 0.705 0.482 P1 0.008 0.003 3.036 0.003 P3 0.030 0.009 3.442 0.001 P6 0.029 0.015 1.930 0.055 P11 -1.875×10-4 <0.001 -2.455 0.015 表 5 线性回归判定对于NAFLD人群纤维化程度具有预测价值的参数
参数 B值 SE t值 P值 常量 0.078 0.477 0.164 0.870 P1 -0.003 0.002 -1.962 0.051 lnP2 0.601 0.237 2.534 0.012 lnP3 0.285 0.189 1.506 0.134 P15 0.036 0.015 2.438 0.016 -
[1] Committee of Hepatology, Chinese Research Hospital Association; Fatty Liver Expert Committee, Chinese Medical Doctor Association; National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, et al. Expert recommendations on standardized diagnosis andtreatment for fatty liver disease(2019 revised edition)[J]. J Clin Hepatol, 2019, 35(11): 2426-2430. DOI: 10.3969/j.issn.1001-5256.2019.11.007.中国研究型医院学会肝病专业委员会, 中国医师协会脂肪性肝病专家委员会, 中华医学会肝病学分会脂肪肝与酒精性肝病学组, 等. 脂肪性肝病诊疗规范化的专家建议(2019年修订)[J]. 临床肝胆病杂志, 2019, 35(11): 2426-2430. DOI: 10.3969/j.issn.1001-5256.2019.11.007. [2] YOUNOSSI ZM, KOENIG AB, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. DOI: 10.1002/hep.28431. [3] ESTES C, ANSTEE QM, ARIAS-LOSTE MT, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030[J]. J Hepatol, 2018, 69(4): 896-904. DOI: 10.1016/j.jhep.2018.05.036. [4] DIEHL AM, DAY C. Cause, Pathogenesis, and treatment of nonalcoholic steatohepatitis[J]. N Engl J Med, 2017, 377(21): 2063-2072. DOI: 10.1056/NEJMra1503519. [5] DULAI PS, SINGH S, PATEL J, et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis[J]. Hepatology, 2017, 65(5): 1557-1565. DOI: 10.1002/hep.29085. [6] ANGULO P, KLEINER DE, DAM-LARSEN S, et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease[J]. Gastroenterology, 2015, 149(2): 389-397. e10. DOI: 10.1053/j.gastro.2015.04.043. [7] ZHENG KI, LIU WY, PAN XY, et al. Combined and sequential non-invasive approach to diagnosing non-alcoholic steatohepatitis in patients with non-alcoholic fatty liver disease and persistently normal alanine aminotransferase levels[J]. BMJ Open Diabetes Res Care, 2020, 8(1): e001174. DOI: 10.1136/bmjdrc-2020-001174. [8] European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease[J]. Obes Facts. 2016, 9(2): 65-90. DOi: 10.1159/000443344. [9] BEDOSSA P, FLIP Pathology Consortium. Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease[J]. Hepatology, 2014, 60(2): 565-575. DOI: 10.1002/hep.27173. [10] HAGSTRÖM H, NASR P, EKSTEDT M, et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD[J]. J Hepatol, 2017, 67(6): 1265-1273. DOI: 10.1016/j.jhep.2017.07.027. [11] National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association; Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease: A 2018 update[J]. J Clin Hepatol, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007. [12] CASTERA L, FRIEDRICH-RUST M, LOOMBA R. Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease[J]. Gastroenterology, 2019, 156(5): 1264-1281. e4. DOI: 10.1053/j.gastro.2018.12.036. [13] SHEN F, ZHENG RD, MI YQ, et al. Value of a two-step approachwith cytokeratin-18 and controlled attenuation parameter in noninvasive differential diagnosis of nonalcoholic steatohepatitis[J]. Chin J Hepatol, 2016, 24(6): 429-434. DOI: 10.3760/cma.j.issn.1007-3418.2016.06.007.沈峰, 郑瑞丹, 宓余强, 等. 细胞角蛋白-18联合受控衰减参数二步法无创鉴别非酒精性脂肪性肝炎的临床研究[J]. 中华肝脏病杂志, 2016, 24(6): 429-434. DOI: 10.3760/cma.j.issn.1007-3418.2016.06.007. [14] WANG L, ZHU M, CAO L, et al. Liver stiffness measurement can reflect the active liver necroinflammation in population with chronic liver disease: A real-world evidence study[J]. J Clin Transl Hepatol, 2019, 7(4): 313-321. DOI: 10.14218/JCTH.2019.00040.
计量
- 文章访问数: 832
- HTML全文浏览量: 179
- PDF下载量: 129
- 被引次数: 0