自噬与非酒精性脂肪性肝病调控相关因子的关系
DOI: 10.3969/j.issn.1001-5256.2021.07.050
利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:李宝龙、赵佳鹤负责课题设计, 资料分析, 撰写论文, 修改论文; 马欣雨、徐敬娅、段婷婷参与收集分析文献资料; 李宝龙、张春蕾负责拟定写作思路, 指导撰写文章并最后定稿。
Research advances in related factors for autophagy in the regulation of nonalcoholic fatty liver disease
-
摘要: 非酒精性脂肪性肝病(NAFLD)是一种常见疾病, 病理表现为肝细胞内脂肪滴大量蓄积。NAFLD不仅成因复杂, 还可诱发心血管疾病、糖尿病等, 然而目前尚无有效的治疗手段和专门的治疗药物。自噬在真核生物中普遍存在, 具有维持细胞内稳态的作用。自噬选择性降解细胞中脂质的机制称为脂噬, 该机制为缓解因脂质蓄积引起的疾病提供了新思路。从NAFLD发生发展、脂肪滴降解过程、肝脏炎症和纤维化进展相关因子入手, 探讨了自噬与NAFLD的相关性。这可能为从自噬入手治疗NAFLD提供理论基础, 并为相关药物的研发提供作用靶点。Abstract: Nonalcoholic fatty liver disease (NAFLD) is a common disease characterized by the accumulation of lipid droplets (LDs) in hepatocytes. Clinical studies have shown that NAFLD not only has complex causes, but also can induce cardiovascular diseases and diabetes; however, there are still no effective therapies and specific drugs for this disease. Autophagy is ubiquitous in eukaryotes and has the function of maintaining cellular homeostasis. The mechanism of selective degradation of lipids in cells by autophagy is called lipophagy, which provides new thoughts for alleviating diseases caused by lipid accumulation. This article analyzes the association between autophagy and NAFLD in terms of the development and progression of NAFLD, the degradation of LDs, and related factors for the progression of liver inflammation and fibrosis, in order to provide a theoretical basis for the treatment of NAFLD from autophagy and provide targets for the development of related drugs.
-
Key words:
- Autophagy /
- Non-alcoholic Fatty Liver Disease /
- Biological Factors
-
[1] DOHERTY J, BAEHRECKE EH. Life, death and autophagy[J]. Nat Cell Biol, 2018, 20(10): 1110-1117. DOI: 10.1038/s41556-018-0201-5. [2] BONAM SR, WANG F, MULLER S. Autophagy: A new concept in autoimmunity regulation and a novel therapeutic option[J]. J Autoimmun, 2018, 94: 16-32. DOI: 10.1016/j.jaut.2018.08.009. [3] KAUSHIK S, CUERVO AM. The coming of age of chaperone-mediated autophagy[J]. Nat Rev Mol Cell Biol, 2018, 19(6): 365-381. DOI: 10.1038/s41580-018-0001-6. [4] ANTONIOLI M, DI RIENZO M, PIACENTINI M, et al. Emerging mechanisms in initiating and terminating autophagy[J]. Trends Biochem Sci, 2017, 42(1): 28-41. DOI: 10.1016/j.tibs.2016.09.008. [5] LI CT, ZHAO TJ, HUANG Q. Role of autophagy in islet β cells: A novel target for diabetes' therapy[J]. Chin J Clin Pharmacol Ther, 2020, 25(3): 344-351. DOI: 10.12092 /j.issn.1009-2501.2020.03.016.李楚婷, 赵天娇, 黄琼. 从自噬在胰岛β细胞中的作用探讨糖尿病治疗的药物靶点[J]. 中国临床药理学与治疗学, 2020, 25(3): 344-351. DOI: 10.12092 /j.issn.1009-2501.2020.03.016. [6] SALAZAR G, CULLEN A, HUANG J, et al. SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence[J]. Autophagy, 2020, 16(6): 1092-1110. DOI: 10.1080/15548627.2019.1659612. [7] WATANABE Y, TAGUCHI K, TANAKA M. Ubiquitin, autophagy and neurodegenerative diseases[J]. Cells, 2020, 9(9): 2022. DOI: 10.3390/cells9092022. [8] WANG YY, ZHOU C, CHAO X, et al. progress of autophagy and primary hepatocellular carcinoma[J]. Chin J Clin Exp Pathol, 2020, 36(8): 943-946. DOI: 10.13315/j.cnki.cjcep.2020.08.014.王阳阳, 周铖, 晁旭, 等. 细胞自噬与原发性肝癌相关研究进展[J]. 临床与实验病理学杂志, 2020, 36(8): 943-946. DOI: 10.13315/j.cnki.cjcep.2020.08.014. [9] WANG Y, SHI XL. Advances in mechanisms of autophagy in common liver diseases[J]. J Hepatopancreatobiliary Surg, 2019, 31(4): 244-247. DOI: 10.11952/j.issn.1007-1954.2019.04.012.王玥, 施晓雷. 自噬在常见肝脏疾病中作用机制的研究进展[J]. 肝胆胰外科杂志, 2019, 31(4): 244-247. DOI: 10.11952/j.issn.1007-1954.2019.04.012. [10] ESLAM M, NEWSOME PN, SARIN SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement[J]. J Hepatol, 2020, 73(1): 202-209. DOI: 10.1016/j.jhep.2020.03.039. [11] ZHOU Q, SU J, JI MY. progress of nutritional therapy for fatty liver[J]. China Med Herald, 2020, 17(6): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202006008.htm周谦, 苏娟, 季梦遥. 非酒精性脂肪性肝病的治疗研究进展[J]. 中国医药导报, 2020, 17(6): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202006008.htm [12] WU TF, LIAO XH, ZHONG BH. Epidemiology of nonalcoholic fatty liver disease in some regions of China[J]. J Clin Hepatol, 2020, 36(6): 1370-1373. DOI: 10.3969/j.issn.1001-5256.2020.06.039.吴挺丰, 廖献花, 钟碧慧. 中国部分地区非酒精性脂肪肝病的流行情况[J]. 临床肝胆病杂志, 2020, 36(6): 1370-1373. DOI: 10.3969/j.issn.1001-5256.2020.06.039. [13] WANG YH, GAO Y. progress in diagnosis and treatment of non-alcoholic fatty liver disease combinated with type 2 diabetes mellitus[J]. J Jilin Univ(Med Edit), 2020, 46(6): 1324-1331. DOI: 10.13481/j.1671-587x.20200634.王雨涵, 高影. 非酒精性脂肪性肝病并发2型糖尿病诊断和治疗的研究进展[J]. 吉林大学学报(医学版), 2020, 46(6): 1324-1331. DOI: 10.13481/j.1671-587x.20200634. [14] LIU XH, ZHAO Y, LI XX, et al. Regulation of lipophagy for nonalcoholic fatty liver disease[J]. Chem Life, 2020, 40(8): 1309-1313. DOI: 10.13488/j.smhx.20200236.刘小慧, 赵云, 李晓晓, 等. 脂噬在非酒精性脂肪性肝病中的调控作用[J]. 生命的化学, 2020, 40(8): 1309-1313. DOI: 10.13488/j.smhx.20200236. [15] SHI LN, WANG K, DENG YD, et al. Role of lipophagy in the regulation of lipid metabolism and the molecular mechanism[J]. J South Med Univ, 2019, 39(7): 867-874. DOI: 10.12122/j.issn.1673-4254.2019.07.19.史琳娜, 王珂, 邓玉娣, 等. 脂噬对脂质代谢的调节作用及其分子机制[J]. 南方医科大学学报, 2019, 39(7): 867-874. DOI: 10.12122/j.issn.1673-4254.2019.07.19. [16] DING H, GE G, TSENG Y, et al. Hepatic autophagy fluctuates during the development of non-alcoholic fatty liver disease[J]. Ann Hepatol, 2020, 19(5): 516-522. DOI: 10.1016/j.aohep.2020.06.001. [17] KOROVILA I, JUNG T, DEUBEL S, et al. Punicalagin attenuates palmitate-induced lipid droplet content by simultaneously improving autophagy in hepatocytes[J]. Mol Nutr Food Res, 2020, 64(20): e2000816. DOI: 10.1002/mnfr.202000816. [18] NAJT CP, KHAN SA, HEDEN TD, et al. Lipid droplet-derived monounsaturated fatty acids traffic via PLIN5 to allosterically activate SIRT1[J]. Mol Cell, 2020, 77(4): 810-824.e8. DOI: 10.1016/j.molcel.2019.12.003. [19] MA SY, SUN KS, ZHANG M, et al. Disruption of Plin5 degradation by CMA causes lipid homeostasis imbalance in NAFLD[J]. Liver Int, 2020, 40(10): 2427-2438. DOI: 10.1111/liv.14492. [20] OGASAWARA Y, CHENG J, TATEMATSU T, et al. Long-term autophagy is sustained by activation of CCTβ3 on lipid droplets[J]. Nat Commun, 2020, 11(1): 4480. DOI: 10.1038/s41467-020-18153-w. [21] KANG SW, HAYDAR G, TANIANE C, et al. AMPK activation prevents and reverses drug-induced mitochondrial and hepatocyte injury by promoting mitochondrial fusion and function[J]. PLoS One, 2016, 11(10): e0165638. DOI: 10.1371/journal.pone.0165638. [22] HEAD SA, SHI W, ZHAO L, et al. Antifungal drug itraconazole targets VDAC1 to modulate the AMPK/mTOR signaling axis in endothelial cells[J]. Proc Natl Acad Sci U S A, 2015, 112(52): e7276-e7285. DOI: 10.1073/pnas.1512867112. [23] ZHU Y, ZHANG C, XU F, et al. System biology analysis reveals the role of voltage-dependent anion channel in mitochondrial dysfunction during non-alcoholic fatty liver disease progression into hepatocellular carcinoma[J]. Cancer Sci, 2020, 111(11): 4288-4302. DOI: 10.1111/cas.14651. [24] ZHUANG ST, ZHANG JL, ZOU YQ, et al. Effect of Shihu mixture on autophagy protein of AMPK/TFEB signaling pathway in rats with T2DM-NAFLD[J]. Chin J Exp Med Formul, 2020, 26(24): 53-58. DOI: 10.13422/j.cnki.syfjx.20202006.庄舒婷, 张家林, 邹玉卿, 等. 石斛合剂对2型糖尿病合并非酒精性脂肪肝大鼠AMPK-TFEB信号通路自噬蛋白的影响[J]. 中国实验方剂学杂志, 2020, 26(24): 53-58. DOI: 10.13422/j.cnki.syfjx.20202006. [25] LU W, MEI J, YANG J, et al. ApoE deficiency promotes non-alcoholic fatty liver disease in mice via impeding AMPK/mTOR mediated autophagy[J]. Life Sci, 2020, 252: 117601. DOI: 10.1016/j.lfs.2020.117601. [26] WU P, ZHAO J, GUO Y, et al. Ursodeoxycholic acid alleviates nonalcoholic fatty liver disease by inhibiting apoptosis and improving autophagy via activating AMPK[J]. Biochem Biophys Res Commun, 2020, 529(3): 834-838. DOI: 10.1016/j.bbrc.2020.05.128. [27] LI D, CUI Y, WANG X, et al. Apple polyphenol extract alleviates lipid accumulation in free-fatty-acid-exposed HepG2 cells via activating autophagy mediated by SIRT1/AMPK signaling[J]. Phytother Res, 2021, 35(3): 1416-1431. DOI: 10.1002/ptr.6902. [28] ROHIT S, SANGAM R, BRIJESH S, et al. Hepatic lipid catabolism via PPARαlysosomal crosstalk[J]. Int J Mol Sci, 2020, 21(7): 2391. DOI: 10.3390/ijms21072391. [29] XU WJ, FAN JL. Crosstalk between PPARα and FXR in nonalcoholic fatty liver disease[J]. Chem Life, 2020, 40(9): 1500-1506. DOI: 10.13488/j.smhx.20200419.徐文静, 范江霖. PPARα与FXR通路在非酒精性脂肪肝病中的交互作用[J]. 生命的化学, 2020, 40(9): 1500-1506. DOI: 10.13488/j.smhx.20200419. [30] FORD BE, CHACHRA SS, ALSHAWI A, et al. Chronic glucokinase activator treatment activates liver Carbohydrate response element binding protein and improves hepatocyte ATP homeostasis during substrate challenge[J]. Diabetes Obes Metab, 2020, 22(11): 1985-1994. DOI: 10.1111/dom.14111. [31] ZHAO T, WU K, HOGSTRAND C, et al. Lipophagy mediated carbohydrate-induced changes of lipid metabolism via oxidative stress, endoplasmic reticulum (ER) stress and ChREBP/PPARγ pathways[J]. Cell Mol Life Sci, 2020, 77(10): 1987-2003. DOI: 10.1007/s00018-019-03263-6. [32] LI BH, LIAO SQ, YIN YW, et al. Telmisartan-induced PPARγ activity attenuates lipid accumulation in VSMCs via induction of autophagy[J]. Mol Biol Rep, 2015, 42(1): 179-186. DOI: 10.1007/s11033-014-3757-6. [33] ZHANG X, ZHAN Y, LIN W, et al. Smurf1 aggravates non-alcoholic fatty liver disease by stabilizing SREBP-1c in an E3 activity-independent manner[J]. FASEB J, 2020, 34(6): 7631-7643. DOI: 10.1096/fj.201902952RR. [34] WANG YJ. Sterol regulatory element binding protein 1c regulates oleic acid-induced hepatoma cell autophagy[D]. Beijing: Capital Medical University, 2016.王芸姣. 固醇调节元件结合蛋白1c在脂性自噬中的作用及机制探讨[D]. 北京: 首都医科大学, 2016. [35] BONHOURE N, BYRNES A, MOIR RD, et al. Loss of the RNA polymerase Ⅲ repressor MAF1 confers obesity resistance[J]. Genes Dev, 2015, 29(9): 934-947. DOI: 10.1101/gad.258350.115. [36] ZHU J, CHENG M, ZHAO X. A tRNA-derived fragment (tRF-3001b) aggravates the development of nonalcoholic fatty liver disease by inhibiting autophagy[J]. Life Sci, 2020, 257: 118125. DOI: 10.1016/j.lfs.2020.118125. [37] XU J, CAO D, ZHANG D, et al. MicroRNA-1 facilitates hypoxia-induced injury by targeting NOTCH3[J]. J Cell Biochem, 2020, 121(11): 4458-4469. DOI: 10.1002/jcb.29663. [38] MENG CY, ZHAO ZQ, BAI R, et al. MicroRNA-22 regulates autophagy and apoptosis in cisplatin resistance of osteosarcoma[J]. Mol Med Rep, 2020, 22(5): 3911-3921. DOI: 10.3892/mmr.2020.11447. [39] LI YL, ZHANG XX, YAO JN, et al. ZEB2-AS1 regulates the expression of TAB3 and promotes the development of colon cancer by adsorbing microRNA-188[J]. Eur Rev Med Pharmacol Sci, 2020, 24(8): 4180-4189. DOI: 10.26355/eurrev_202004_20998. [40] LIU B, CHAI Y, GUO W, et al. MicroRNA-188 aggravates contrast-induced apoptosis by targeting SRSF7 in novel isotonic contrast-induced acute kidney injury rat models and renal tubular epithelial cells[J]. Ann Transl Med, 2019, 7(16): 378. DOI: 10.21037/atm.2019.07.20. [41] LEE K, KIM H, AN K, et al. Replenishment of microRNA-188-5p restores the synaptic and cognitive deficits in 5XFAD Mouse Model of Alzheimer's Disease[J]. Sci Rep, 2016, 6: 34433. DOI: 10.1038/srep34433. [42] LI CJ, CHENG P, LIANG MK, et al. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation[J]. J Clin Invest, 2015, 125(4): 1509-1522. DOI: 10.1172/JCI77716. [43] LIU Y, ZHOU X, XIAO Y, et al. miR-188 promotes liver steatosis and insulin resistance via the autophagy pathway[J]. J Endocrinol, 2020, 245(3): 411-423. DOI: 10.1530/JOE-20-0033. [44] OU Z, WADA T, GRAMIGNOLI R, et al. MicroRNA hsa-miR-613 targets the human LXRα gene and mediates a feedback loop of LXRα autoregulation[J]. Mol Endocrinol, 2011, 25(4): 584-596. DOI: 10.1210/me.2010-0360. [45] HUANG F, LIU H, LEI Z, et al. Long noncoding RNA CCAT1 inhibits miR-613 to promote nonalcoholic fatty liver disease via increasing LXRα transcription[J]. J Cell Physiol, 2020, 235(12): 9819-9833. DOI: 10.1002/jcp.29795. [46] KIM YS, NAM HJ, HAN CY, et al. Liver X receptor alpha activation inhibits autophagy and lipophagy in hepatocytes by dysregulating autophagy-related 4B cysteine peptidase and Rab-8B, reducing mitochondrial fuel oxidation[J]. Hepatology, 2021, 73(4): 1307-1326. DOI: 10.1002/hep.31423. [47] TANG M, JIANG Y, JIA H, et al. Osteopontin acts as a negative regulator of autophagy accelerating lipid accumulation during the development of nonalcoholic fatty liver disease[J]. Artif Cells Nanomed Biotechnol, 2020, 48(1): 159-168. DOI: 10.1080/21691401.2019.1699822. [48] YANG H, XUEFENG Y, SHANDONG W, et al. COX-2 in liver fibrosis[J]. Clin Chim Acta, 2020, 506: 196-203. DOI: 10.1016/j.cca.2020.03.024. [49] PALUMBO P, LOMBARDI F, AUGELLO FR, et al. Biological effects of selective COX-2 inhibitor NS398 on human glioblastoma cell lines[J]. Cancer Cell Int, 2020, 20: 167. DOI: 10.1186/s12935-020-01250-7.
本文二维码
计量
- 文章访问数: 781
- HTML全文浏览量: 123
- PDF下载量: 70
- 被引次数: 0