线粒体障碍在非酒精性脂肪性肝炎中的作用机制
DOI: 10.3969/j.issn.1001-5256.2021.08.045
Mechanism of action of mitochondrial disorders in nonalcoholic steatohepatitis
-
摘要: 非酒精性脂肪性肝炎(NASH)是一种以肝脂肪变性、肝细胞炎症和肝纤维化为主要特征的常见慢性肝病。研究表明,线粒体内脂质代谢异常和活性氧生成、线粒体呼吸链受损、线粒体破裂以及线粒体自噬异常等线粒体障碍在NASH的发生、发展及转归过程中发挥重要作用。以NASH中肝脂肪代谢异常、肝炎发生和肝纤维化为主要线索,总结线粒体结构破坏、功能障碍以及线粒体自噬受损在NASH中的作用机制,以寻找相应靶点指导对NASH的治疗。Abstract: Nonalcoholic steatohepatitis (NASH) is a common chronic liver disease characterized by hepatic steatosis, hepatocyte inflammation, and liver fibrosis. Studies have shown that mitochondrial disorders, such as abnormal lipid metabolism, reactive oxygen generation, damaged mitochondrial respiratory chain, mitochondrial rupture, and abnormal mitochondrial autophagy, play an important role in the development, progression, and prognosis of NASH. With the main clues of abnormal lipid metabolism, hepatitis, and liver fibrosis in NASH, this article reviews the mechanism of action of mitochondrial structural destruction, mitochondrial dysfunction, and impaired mitochondrial autophagy in NASH, so as to find corresponding targets for the treatment of NASH.
-
Key words:
- Non-Alcoholic Fatty Liver Disease /
- Mitochondria /
- Autophagy
-
原发性肝癌是肝脏最常见的恶性肿瘤之一,其在我国发病率居恶性肿瘤的第4位,肿瘤相关死亡第2位[1]。肝细胞癌(HCC)是肝癌中的最常见的类型,是目前全球第五大恶性肿瘤。慢性肝脏疾病患者,如患有病毒性肝炎、酒精性肝病、非酒精性脂肪性肝炎等,是HCC的主要高危人群。中国的新发病例数及死亡病例数均占了全球的50%左右,因此HCC严重影响我国人民的健康[2]。
对于肝癌患者的根治性治疗,目前主要有肝切除术(liver resection, LR)和肝移植术(liver transplantation, LT)两种方法[3-4],2种方法的选择取决于医院和医生的水平、患者的意愿及身体状况等。为了提高对这2种治疗方法结果的认识,更好的指导临床,本文回顾性分析了首都医科大学附属北京佑安医院171例HCC患者治疗后3年的随访资料,比较LR和LT 2种方法的临床治疗效果。
1. 资料与方法
1.1 研究对象
选取2009年3月—2014年3月在本院首次接受LR或LT的HCC患者171例,依据治疗方式的不同分为LR组(n=83)和LT组(n=88)。LT组患者肝癌的分期依照UICC/AJCC第7版及巴塞罗那分期(BCLC)进行。
1.2 纳入与排除标准
纳入标准:(1)病理确诊符合HCC的诊断标准;(2)LR及LT治疗均在适应证内。排除标准:(1)既往有恶性肿瘤病史;(2)术前曾行抗肿瘤治疗;(3)术后有肿瘤残留;(4)合并严重糖尿病、高血压、心脏病、肾脏病等可能影响生存期的疾病。
1.3 随访情况
患者经过门诊及电话随访,随访主要终点为死亡或随访满3年(36个月),次要终点为检测到肿瘤复发。
1.4 伦理学审查
本研究获得首都医科大学附属北京佑安医院伦理委员会审批,批号:LL-2018-031-K。受试者均签署知情同意书。
1.5 统计学方法
采用SPSS 25.0统计学软件进行数据分析。分类资料组间比较使用χ2检验。比较亚组间无瘤生存期和总生存期的差异使用Kaplan-Meier和log-rank检验。检测影响预后的因素使用单因素和多因素Cox比例风险模型。P<0.05为差异有统计学意义。
2. 结果
2.1 一般资料
171例HCC患者中男142例(83.04%),女29例(16.96%)。95例(55.56%)患者在50岁以下。3年随访期间共有20例(11.70%)患者失访。3年随访结束时,69例(40.35%)患者肿瘤复发,32例(18.71%)患者发生HCC相关死亡(表 1)。
表 1 肝癌患者的基本资料指标 例数(n=171) 手术类型 χ2值 P值 LR组(n=83) LT组(n=88) 性别(例) 0.192 0.661 男 142 70 72 女 29 13 16 年龄(例) 0.117 0.732 ≤50岁 95 45 50 >50岁 76 38 38 潜在肝病(例) 2.333 0.311 HBV 153 76 77 HCV 17 6 11 其他 1 1 0 肿瘤位置(例) 1.161 0.281 右叶 119 61 58 非右叶或多叶 52 22 30 肿瘤数目(例) 29.649 <0.001 单发 113 38 75 多发 58 45 13 肿瘤大小(例) 46.383 <0.001 <3 cm 72 13 59 3~5 cm 62 43 19 >5 cm 37 27 10 AFP (例) 3.350 0.187 <20 ng/ml 82 42 40 20~400 ng/ml 52 20 32 >400 ng/ml 37 21 16 TNM分期(例) 0.174 0.677 Ⅰ+Ⅱ 117 57 63 Ⅲ+Ⅳ 54 26 25 BCLC肝癌分期(例) 0.057 0.972 A 87 42 45 B 44 22 22 C 40 19 21 Child-Pugh分级(例) 7.833 0.005 C 140 75 65 B+C 31 8 23 病理分级(例) 2.573 0.276 低分化 29 18 11 中分化 113 52 61 高分化 29 13 16 肿瘤复发(例) 4.121 0.042 否 102 43 59 是 69 40 29 HCC所致死亡(例) 0.937 0.333 否 139 65 74 是 32 18 14 从基础数据上可以看出,LT组较LR组的单发肿瘤比例更多、肿瘤更小、Child-Pugh分期更高、复发率更低(P值均<0.05),而其他的指标如性别、年龄、潜在肝病、肿瘤位置、AFP水平、TNM分期、BCLC肝癌分期和病理分级2组间比较差异均无统计学意义(P值均>0.05)(表 1)。
2.2 无瘤生存期和总生存期
随访3年,LR组患者无瘤生存率是46.02%,而LT组患者的无瘤生存率为80.71%,两组差异具有统计学意义(P=0.006)(图 1);LR组患者的总生存率是76.44%,LT组患者的总生存率为86.99%,两组比较差异无统计学意义(P=0.219)(图 2)。
2.3 HCC患者结局的影响因素分析
使用Cox生存分析方法分析无瘤生存期、总生存期和临床特征之间的相关性。在无瘤生存期的单因素分析中,治疗方法和TNM分期是无瘤生存期的影响因素(P值均<0.05)(表 2)。多因素分析结果显示,治疗方法和TNM期是HCC患者无瘤生存期的独立预后因素[RR(95% CI)分别为0.239(0.093~0.612)、4.834(2.598~8.993),P值分别为0.003、<0.001]。在总生存期的单因素分析中,TNM分期是无瘤生存期的影响因素(P<0.001)(表 2)。多因素分析发现TNM分期是HCC患者总生存期的独立预后因素[RR(95% CI):4.970(2.052~12.037),P<0.001]。
表 2 肝癌患者无瘤生存期和总生存期的单因素分析指标 无瘤生存期 总生存期 RR 95%CI P值 RR 95%CI P值 性别 男 1.000 1.000 女 0.539 0.213~1.367 0.193 0.474 0.110~2.034 0.315 年龄 ≤50岁 1.000 1.000 >50岁 1.023 0.570~1.838 0.939 0.678 0.281~1.636 0.387 肝病 HBV 1.000 1.000 HCV/其他 0.380 0.092~1.569 0.181 0.872 0.203~3.747 0.854 肿瘤位置 肝右叶 1.000 1.000 其他位置 0.816 0.422~1.581 0.548 0.693 0.254~1.893 0.475 肿瘤数目 单发 1.000 1.000 多发 1.513 0.833~2.751 0.174 1.491 0.628~3.542 0.365 肿瘤大小 <3 cm 1.000 1.000 <3 cm 1.000 1.000 3~5 cm 1.360 0.647~2.860 0.418 2.956 0.890~9.819 0.077 >5 cm 3.877 1.924~7.812 <0.001 5.595 1.721~18.189 0.004 AFP <20 ng/ml 1.000 1.000 20~400 ng/ml 1.862 0.861~4.025 0.114 0.982 1.699~12.123 0.003 >400 ng/ml 3.625 1.804~7.285 <0.001 4.539 1.699~12.123 0.003 TNM分期 Ⅰ-Ⅱ 1.000 1.000 Ⅲ 4.084 2.237~7.455 <0.001 4.985 2.058~12.076 <0.001 BCLC HCC分期 A 1.000 1.000 B 1.778 0.887~3.564 0.003 1.235 0.349~4.378 0.001 C 3.008 1.453~6.230 0.105 0.003 5.566 2.052~15.101 0.001 Child-Pugh分级 A 1.000 1.000 B+C 0.446 0.160~1.245 0.123 1.886 0.731~4.864 0.189 病理分期 低分化 1.000 1.000 中/高分化 0.813 0.378~1.750 0.597 0.524 0.203~1.350 0.181 治疗方法 LR 1.000 1.000 LT 3.383 1.334~8.579 0.010 0.474 0.140~1.610 0.232 3. 讨论
肝癌的治疗需要多学科协同、多种方法综合进行。目前临床上常用的肝癌治疗方法包括:LR、LT、局部消融治疗(射频消融治疗术为主)、经导管肝动脉化疗栓塞术、放射治疗、全身治疗(包括分子靶向治疗、免疫治疗、化疗、中医治疗等)等[3-5]。既往认为LT治疗的肝癌患者生存结局更好[5]。但是随着对HCC发生发展的探索、影像诊断水平的提高、局部和全身治疗方法的完善、手术技术的进步和术后多学科诊疗模式的形成,不同治疗下患者的最终结局,也随之而改善,有学者[6-7]提出目前LR治疗肝癌与LT同样取得理想效果。金子铮等[8]研究发现LT较LR治疗肝癌患者的5年生存率的优势,2005年—2011年较1989年—2004年明显缩小(73% vs 61%,77% vs 36%),他们认为这种优势的缩小是由于手术水平的进步、围手术期对肝硬化治疗的优化和对于复发肿瘤多手段的治疗。除了总体变化趋势外,治疗的结果还和医院的水平、患者的状况等多个因素相关。本研究发现LT较LR治疗肝癌3年后肿瘤的复发率明显降低,而总生存率差别不显著。Shen等[9]回顾分析了1218例LT和2068例LR治疗肝癌的患者得出结论,LT比LR在无瘤生存率和总生存率上都有优势。矫学黎等[7]对352例LR和37例LT治疗的患者进行了统计分析后也得到了相似的结论。本研究中LT组较LR组的肿瘤复发率明显降低,与文献一致。另一项纳入9篇关于LT和LR治疗HCC效果研究的Meta分析[10]结果显示,HCC患者术后第1年两种治疗方法的总生存率相似,术后第5年LR组较LT组总生存率明显降低。这与本研究中两组总生存率的结果稍有差别。该研究还认为,与LR组相比,HCC患者术后3年LT组的获益才开始表现出来,而本研究的随访截点正好是3年,因此本研究结果与其他中心的研究结果并不矛盾。肿瘤复发才是病死率增加的开始,如果延长随访时间,本研究的总生存率也将出现显著性差异。故本研究数据结合文献检索的结果,支持LT较LR治疗肝癌更有优势。
从笔者的基础数据上可以看出,LT组较LR组的单发肿瘤更多、肿瘤更小、Child-Pugh分期更高,而其他的指标如性别、年龄、潜在肝病、肿瘤位置、AFP水平、TNM分期、BCLC肝癌分期和病理分级2组比较差异均无统计学差异,这是因为在选择LT治疗的时候,兼顾疗效与公平,平衡考虑肿瘤患者预后,主观限制了总体的肿瘤数目和大小。LT较LR治疗肝癌患者的另一优势是不用考虑患者的肝功能,可以同时解决肿瘤和肝功能衰竭两大问题,本研究入组的LT患者中有2例是Child-Pugh C级。综上所述,LT更倾向于选择肝功能储备较差的早期肝癌患者,3年无瘤生存率令人满意。
LT也存在一定的缺点,比如供体的缺乏、术中并发症多、药物排异等,为了弥补这些缺点,目前已有较多研究在推动LT的进步,包括移植方法上的改进、治疗适应证的拓展、新型抗排异药物的研发和围手术期处理的优化等[11-14]。
本研究结果还得出TNM分期是无瘤生存期和总生存期的独立预测因素,支持TNM分期在临床上的重要作用,不但可以用于指导治疗方法的选择,还能预测术后结果。但是TNM分期也有缺点,淋巴结或远处脏器转移有时术前和术中难以准确评估,因此更好的判断预后的指标和方法也是研究的热点。
另外,本研究是单中心研究,基于现有的临床资料,还存在着样本量较小、随访时间短、纳入因素不全面等因素,而且对于手术切除范围、肝移植方法、供体类型、术后治疗、医疗成本、并发症情况等因素未纳入其中,局限了研究的意义。希望将来设计多中心、样本量更大的研究来弥补以上不足, 将更有利于临床工作的不断提升。
-
[1] ANJANI K, LHOMME M, SOKOLOVSKA N, et al. Circulating phospholipid profiling identifies portal contribution to NASH signature in obesity[J]. J Hepatol, 2015, 62(4): 905-912. DOI: 10.1016/j.jhep.2014.11.002. [2] KNEBEL B, HARTWIG S, HAAS J, et al. Peroxisomes compensate hepatic lipid overflow in mice with fatty liver[J]. Biochim Biophys Acta, 2015, 1851(7): 965-976. DOI: 10.1016/j.bbalip.2015.03.003. [3] GAMBINO R, MUSSO G, CASSADER M. Redox balance in the pathogenesis of nonalcoholic fatty liver disease: Mechanisms and therapeutic opportunities[J]. Antioxid Redox Signal, 2011, 15(5): 1325-1365. DOI: 10.1089/ars.2009.3058. [4] ANDERSON A, CAMPO A, FULTON E, et al. 7-Ketocholesterol in disease and aging[J]. Redox Biol, 2020, 29: 101380. DOI: 10.1016/j.redox.2019.101380. [5] SUN X, SEIDMAN JS, ZHAO P, et al. Neutralization of oxidized phospholipids ameliorates non-alcoholic steatohepatitis[J]. Cell Metab, 2020, 31(1): 189-206. e8. DOI: 10.1016/j.cmet.2019.10.014. [6] PIROLA CJ, GARAYCOECHEA M, FLICHMAN D, et al. Liver mitochondrial DNA damage and genetic variability of Cytochrome b - a key component of the respirasome - drive the severity of fatty liver disease[J]. J Intern Med, 2021, 289(1): 84-96. DOI: 10.1111/joim.13147. [7] MALIK AN, SIMÖES I, ROSA HS, et al. A diet induced maladaptive increase in hepatic mitochondrial DNA precedes OXPHOS defects and may contribute to non-alcoholic fatty liver disease[J]. Cells, 2019, 8(10): 1222. DOI: 10.3390/cells8101222. [8] ITEM F, WUEEST S, LEMOS V, et al. Fas cell surface death receptor controls hepatic lipid metabolism by regulating mitochondrial function[J]. Nat Commun, 2017, 8(1): 480. DOI: 10.1038/s41467-017-00566-9. [9] EL-DERANY MO, EL-DEMERDASH E. Pyrvinium pamoate attenuates non-alcoholic steatohepatitis: Insight on hedgehog/Gli and Wnt/β-catenin signaling crosstalk[J]. Biochem Pharmacol, 2020, 177: 113942. DOI: 10.1016/j.bcp.2020.113942. [10] WANG L, LIU X, NIE J, et al. ALCAT1 controls mitochondrial etiology of fatty liver diseases, linking defective mitophagy to steatosis[J]. Hepatology, 2015, 61(2): 486-496. DOI: 10.1002/hep.27420. [11] PARK HS, SONG JW, PARK JH, et al. TXNIP/VDUP1 attenuates steatohepatitis via autophagy and fatty acid oxidation[J]. Autophagy, 2020. DOI: 10.1080/15548627.2020.1834711.[Onlineaheadofprint] [12] SCHRÖDER T, KUCHARCZYK D, BÄR F, et al. Mitochondrial gene polymorphisms alter hepatic cellular energy metabolism and aggravate diet-induced non-alcoholic steatohepatitis[J]. Mol Metab, 2016, 5(4): 283-295. DOI: 10.1016/j.molmet.2016.01.010. [13] HOYT LR, RANDALL MJ, ATHER JL, et al. Mitochondrial ROS induced by chronic ethanol exposure promote hyper-activation of the NLRP3 inflammasome[J]. Redox Biol, 2017, 12: 883-896. DOI: 10.1016/j.redox.2017.04.020. [14] ZOROV DB, FILBURN CR, KLOTZ LO, et al. Reactive oxygen species (ROS)-induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes[J]. J Exp Med, 2000, 192(7): 1001-1014. DOI: 10.1084/jem.192.7.1001. [15] ANTONIEL M, JONES K, ANTONUCCI S, et al. The unique histidine in OSCP subunit of F-ATP synthase mediates inhibition of the permeability transition pore by acidic pH[J]. EMBO Rep, 2018, 19(2): 257-268. DOI: 10.15252/embr.201744705. [16] WEST AP, SHADEL GS. Mitochondrial DNA in innate immune responses and inflammatory pathology[J]. Nat Rev Immunol, 2017, 17(6): 363-375. DOI: 10.1038/nri.2017.21. [17] ZHONG Z, UMEMURA A, SANCHEZ-LOPEZ E, et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria[J]. Cell, 2016, 164(5): 896-910. DOI: 10.1016/j.cell.2015.12.057. [18] GUHA P, TYAGI R, CHOWDHURY S, et al. IPMK mediates activation of ULK signaling and transcriptional regulation of autophagy linked to liver inflammation and regeneration[J]. Cell Rep, 2019, 26(10): 2692-2703. e7. DOI: 10.1016/j.celrep.2019.02.013. [19] DE GREGORIO E, COLELL A, MORALES A, et al. Relevance of SIRT1-NF-κB axis as therapeutic target to ameliorate inflammation in liver disease[J]. Int J Mol Sci, 2020, 21(11): 3858. DOI: 10.3390/ijms21113858. [20] WIDJAJA AA, SINGH BK, ADAMI E, et al. Inhibiting interleukin 11 signaling reduces hepatocyte death and liver fibrosis, inflammation, and steatosis in mouse models of nonalcoholic steatohepatitis[J]. Gastroenterology, 2019, 157(3): 777-792. e14. DOI: 10.1053/j.gastro.2019.05.002. [21] DAS N, MANDALA A, NAAZ S, et al. Melatonin protects against lipid-induced mitochondrial dysfunction in hepatocytes and inhibits stellate cell activation during hepatic fibrosis in mice[J]. J Pineal Res, 2017, 62(4): e12404. DOI: 10.1111/jpi.12404. [22] FRANGOGIANNIS N. Transforming growth factor-β in tissue fibrosis[J]. J Exp Med, 2020, 217(3): e20190103. DOI: 10.1084/jem.20190103. [23] CHERESH P, KIM SJ, TULASIRAM S, et al. Oxidative stress and pulmonary fibrosis[J]. Biochim Biophys Acta, 2013, 1832(7): 1028-1040. DOI: 10.1016/j.bbadis.2012.11.021. [24] OKINA Y, SATO-MATSUBARA M, MATSUBARA T, et al. TGF-β1-driven reduction of cytoglobin leads to oxidative DNA damage in stellate cells during non-alcoholic steatohepatitis[J]. J Hepatol, 2020, 73(4): 882-895. DOI: 10.1016/j.jhep.2020.03.051. [25] AN P, WEI LL, ZHAO S, et al. Hepatocyte mitochondria-derived danger signals directly activate hepatic stellate cells and drive progression of liver fibrosis[J]. Nat Commun, 2020, 11(1): 2362. DOI: 10.1038/s41467-020-16092-0. [26] MARCELIN G, da CUNHA C, GAMBLIN C, et al. Autophagy inhibition blunts PDGFRA adipose progenitors' cell-autonomous fibrogenic response to high-fat diet[J]. Autophagy, 2020, 16(12): 2156-2166. DOI: 10.1080/15548627.2020.1717129. [27] McCOMMIS KS, FINCK BN. Treating hepatic steatosis and fibrosis by modulating mitochondrial pyruvate metabolism[J]. Cell Mol Gastroenterol Hepatol, 2019, 7(2): 275-284. DOI: 10.1016/j.jcmgh.2018.09.017. [28] LIU J, LI D, ZHANG T, et al. SIRT3 protects hepatocytes from oxidative injury by enhancing ROS scavenging and mitochondrial integrity[J]. Cell Death Dis, 2017, 8(10): e3158. DOI: 10.1038/cddis.2017.564. [29] MANSOURI A, GATTOLLIAT CH, ASSELAH T. Mitochondrial dysfunction and signaling in chronic liver diseases[J]. Gastroenterology, 2018, 155(3): 629-647. DOI: 10.1053/j.gastro.2018.06.083. [30] ZENG X, YANG J, HU O, et al. Dihydromyricetin ameliorates nonalcoholic fatty liver disease by improving mitochondrial respiratory capacity and redox homeostasis through modulation of SIRT3 signaling[J]. Antioxid Redox Signal, 2019, 30(2): 163-183. DOI: 10.1089/ars.2017.7172. [31] SINHA K, DAS J, PAL PB, et al. Oxidative stress: The mitochondria-dependent and mitochondria-independent pathways of apoptosis[J]. Arch Toxicol, 2013, 87(7): 1157-1180. DOI: 10.1007/s00204-013-1034-4. [32] TAIT SW, GREEN DR. Mitochondria and cell death: Outer membrane permeabilization and beyond[J]. Nat Rev Mol Cell Biol, 2010, 11(9): 621-632. DOI: 10.1038/nrm2952. [33] DU J, ZHANG X, HAN J, et al. Pro-inflammatory CXCR3 impairs mitochondrial function in experimental non-alcoholic steatohepatitis[J]. Theranostics, 2017, 7(17): 4192-4203. DOI: 10.7150/thno.21400. [34] ANDUEZA A, GARDE N, GARCÍA-GARZÓN A, et al. NADPH oxidase 5 promotes proliferation and fibrosis in human hepatic stellate cells[J]. Free Radic Biol Med, 2018, 126: 15-26. DOI: 10.1016/j.freeradbiomed.2018.07.013. [35] ZHAO Q, LIU J, DENG H, et al. Targeting mitochondria-located circRNA SCAR alleviates NASH via reducing mROS output[J]. Cell, 2020, 183(1): 76-93. e22. DOI: 10.1016/j.cell.2020.08.009. [36] LV F, LI N, KONG M, et al. CDKN2a/p16 antagonizes hepatic stellate cell activation and liver fibrosis by modulating ROS levels[J]. Front Cell Dev Biol, 2020, 8: 176. DOI: 10.3389/fcell.2020.00176. [37] WU X, POULSEN KL, SANZ-GARCIA C, et al. MLKL-dependent signaling regulates autophagic flux in a murine model of non-alcohol-associated fatty liver and steatohepatitis[J]. J Hepatol, 2020, 73(3): 616-627. DOI: 10.1016/j.jhep.2020.03.023 期刊类型引用(1)
1. 宋林泉,梁志宏. 肝门再阻断法在肝切除术后胆漏中的预防效果. 吉林医学. 2024(02): 364-367 . 百度学术
其他类型引用(3)
-

计量
- 文章访问数: 791
- HTML全文浏览量: 310
- PDF下载量: 96
- 被引次数: 4