中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原发性胆汁性胆管炎动物模型的研究进展

徐雅菲 赵志斌 廉哲雄

引用本文:
Citation:

原发性胆汁性胆管炎动物模型的研究进展

DOI: 10.3969/j.issn.1001-5256.2021.10.006
详细信息
    通信作者:

    廉哲雄,zxlian@scut.edu.cn

  • 中图分类号: R575.22

Research advances in animal models of primary biliary cholangitis

  • 摘要: 原发性胆汁性胆管炎(PBC)是由针对肝内中小胆管的自身免疫反应引起的胆汁淤积性肝脏炎症疾病。临床上最具疾病特异性的表现为自身抗线粒体抗体阳性和肝脏组织学上的选择性中小胆管破坏。由于PBC早期临床样本难以获取,构建并优化合适的小鼠模型是研究PBC发病机制的重要手段。了解PBC动物模型的建模原理和在血清学、组织学、细胞学上的疾病特征表现,既有利于加深对PBC疾病的认识,也有助于科学、合理地设计研究方案。

     

  • 表  1  不同PBC模型特点比较

    PBC模型 造模原理 优点 缺点 并发症 主要致病细胞 模型选择建议
    dnTGFβRⅡ T淋巴细胞中的TGFβ信号通路被阻断 模拟了PBC早期的关键血清学、病理学特征 门静脉区未见嗜酸性粒细胞浸润和肉芽肿 炎症性肠病 CD8+ T淋巴细胞(PBC) 适于探究PBC早期发病过程
    未见循环IgM的持续升高,而是出现IgA水平升高 CD4+ T淋巴细胞(结肠炎)
    ARE-Del-/- 慢性、持续性表达性IFNγ 明显的性别倾向 检测不到ALP
    肝纤维化程度较轻
    系统性红斑狼疮 CD4+ T淋巴细胞 适于探究PBC的性别差异
    NOD.c3c4 NOD模型鼠获得胰岛素依赖性糖尿病抗性 部分小鼠可见嗜酸性粒细胞浸润、上皮样肉芽肿样病变和早期肝纤维化 自身免疫的初始攻击位置与临床不同 肝脏胆道多囊病 CD4+ T淋巴细胞和CD8+ T淋巴细胞单独均可致病 -
    AMA阳性率较低
    检测不到ALP
    血清中IgM和IgA均升高
    Scurfy Treg细胞完全缺陷 - 全身性的自身免疫性疾病 全身性的自身免疫病 CD8+ T淋巴细胞 -
    寿命只有4周左右
    IL-2Rα-/- Treg细胞减少 - 没有肉芽肿和嗜酸性粒细胞浸润 严重贫血 CD8+ T淋巴细胞(PBC) -
    淋巴组织增生性自身免疫病 CD4+ T淋巴细胞(结肠炎)
    溃疡性结肠炎
    IL-2Rα-/-
    IL12-p40-/-
    在IL-2Rα-/-模型的基础上敲除IL-12p40 抑制了IL-2Rα-/-模型的结肠炎 - 干燥综合征 CD8+ T淋巴细胞 适于探究PBC重度炎症及向纤维化发展的发病过程
    加重了肝门静脉炎症和胆管损伤,并促进其向肝纤维化发展 贫血和髓外造血
    Ae2a, b-/- 破坏Cl-/HCO3-跨质膜交换,干扰细胞内pH调控 - 个体差异大 - - -
    2OA-BSA免疫 用能被AMA识别的半抗原进行长期诱导 可见上皮样肉芽肿样病变 检测不到胆汁淤积酶 - CD8+ T淋巴细胞 适于探究环境因素引起的PBC早期发病过程
    不能进展为肝脏纤维化
    2OA-poly Ⅰ∶C联合免疫 在2OA-BSA免疫模型的基础上加以病毒RNA模拟物诱导 促进了2OA免疫小鼠的PBC进展 - - - 适于探究环境因素引起的PBC发病过程
    可见嗜酸性粒细胞浸润
    部分小鼠出现肝纤维化
    注: “-”表示特征不显著或鲜有报道。
    下载: 导出CSV
  • [1] SCHEUER PJ. Ludwig Symposium on biliary disorders--part Ⅱ. Pathologic features and evolution of primary biliary cirrhosis and primary sclerosing cholangitis[J]. Mayo Clin Proc, 1998, 73(2): 179-183. DOI: 10.4065/73.2.179.
    [2] VLEGGAAR FP, van BUUREN HR. No prognostic significance of antimitochondrial antibody profile testing in primary biliary cirrhosis[J]. Hepatogastroenterology, 2004, 51(58): 937-940.
    [3] GORELIK L, FLAVELL RA. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease[J]. Immunity, 2000, 12(2): 171-181. DOI: 10.1016/s1074-7613(00)80170-3.
    [4] HUANG MX, YANG SY, LUO PY, et al. Gut microbiota contributes to sexual dimorphism in murine autoimmune cholangitis[J]. J Leukoc Biol, 2021. DOI: 10.1002/JLB.3MA0321-037R.[Online abead of print]
    [5] NAKAMURA A, YAMAZAKI K, SUZUKI K, et al. Increased portal tract infiltration of mast cells and eosinophils in primary biliary cirrhosis[J]. Am J Gastroenterol, 1997, 92(12): 2245-2249.
    [6] HODGE DL, BERTHET C, COPPOLA V, et al. IFN-gamma AU-rich element removal promotes chronic IFN-gamma expression and autoimmunity in mice[J]. J Autoimmun, 2014, 53: 33-45. DOI: 10.1016/j.jaut.2014.02.003.
    [7] BAE HR, LEUNG PS, TSUNEYAMA K, et al. Chronic expression of interferon-gamma leads to murine autoimmune cholangitis with a female predominance[J]. Hepatology, 2016, 64(4): 1189-1201. DOI: 10.1002/hep.28641.
    [8] IRIE J, WU Y, WICKER LS, et al. NOD. c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis[J]. J Exp Med, 2006, 203(5): 1209-1219. DOI: 10.1084/jem.20051911.
    [9] ZHANG W, SHARMA R, JU ST, et al. Deficiency in regulatory T cells results in development of antimitochondrial antibodies and autoimmune cholangitis[J]. Hepatology, 2009, 49(2): 545-552. DOI: 10.1002/hep.22651.
    [10] GODFREY VL, WILKINSON JE, RUSSELL LB. X-linked lymphoreticular disease in the scurfy (sf) mutant mouse[J]. Am J Pathol, 1991, 138(6): 1379-1387.
    [11] NELSON BH. IL-2, regulatory T cells, and tolerance[J]. J Immunol, 2004, 172(7): 3983-3988. DOI: 10.4049/jimmunol.172.7.3983.
    [12] WAKABAYASHI K, LIAN ZX, MORITOKI Y, et al. IL-2 receptor alpha(-/-) mice and the development of primary biliary cirrhosis[J]. Hepatology, 2006, 44(5): 1240-1249. DOI: 10.1002/hep.21385.
    [13] HSU W, ZHANG W, TSUNEYAMA K, et al. Differential mechanisms in the pathogenesis of autoimmune cholangitis versus inflammatory bowel disease in interleukin-2Ralpha(-/-) mice[J]. Hepatology, 2009, 49(1): 133-140. DOI: 10.1002/hep.22591.
    [14] ZHU J, YAMANE H, PAUL WE. Differentiation of effector CD4 T cell populations (*)[J]. Annu Rev Immunol, 2010, 28: 445-489. DOI: 10.1146/annurev-immunol-030409-101212.
    [15] YAO Y, YANG W, YANG YQ, et al. Distinct from its canonical effects, deletion of IL-12p40 induces cholangitis and fibrosis in interleukin-2Rα(-/-) mice[J]. J Autoimmun, 2014, 51: 99-108. DOI: 10.1016/j.jaut.2014.02.009.
    [16] LINDOR KD, GERSHWIN ME, POUPON R, et al. Primary biliary cirrhosis[J]. Hepatology (Baltimore, Md), 2009, 50(1): 291-308. DOI: 10.1002/hep.22906.
    [17] GAO CY, YAO Y, LI L, et al. Tissue-resident memory CD8+ T cells acting as mediators of salivary gland damage in a murine model of sjögren's syndrome[J]. Arthritis Rheumatol, 2019, 71(1): 121-132. DOI: 10.1002/art.40676.
    [18] SUN Y, ZHANG W, LI B, et al. The coexistence of Sjögren's syndrome and primary biliary cirrhosis: A comprehensive review[J]. Clin Rev Allergy Immunol, 2015, 48(2-3): 301-315. DOI: 10.1007/s12016-015-8471-1.
    [19] YAO Y, LI L, YANG SH, et al. CD8+ T cells and IFN-γ induce autoimmune myelofibrosis in mice[J]. J Autoimmun, 2018, 89: 101-111. DOI: 10.1016/j.jaut.2017.12.011.
    [20] ROMERO MF, FULTON CM, BORON WF. The SLC4 family of HCO3- transporters[J]. Pflugers Arch, 2004, 447(5): 495-509. DOI: 10.1007/s00424-003-1180-2.
    [21] GAWENIS LR, LEDOUSSAL C, JUDD LM, et al. Mice with a targeted disruption of the AE2 Cl-/HCO3- exchanger are achlorhydric[J]. J Biol Chem, 2004, 279(29): 30531-30539. DOI: 10.1074/jbc.M403779200.
    [22] BANALES JM, ARENAS F, RODRÍGUEZ-ORTIGOSA CM, et al. Bicarbonate-rich choleresis induced by secretin in normal rat is taurocholate-dependent and involves AE2 anion exchanger[J]. Hepatology, 2006, 43(2): 266-275. DOI: 10.1002/hep.21042.
    [23] SALAS JT, BANALES JM, SARVIDE S, et al. Ae2a, b-deficient mice develop antimitochondrial antibodies and other features resembling primary biliary cirrhosis[J]. Gastroenterology, 2008, 134(5): 1482-1493. DOI: 10.1053/j.gastro.2008.02.020.
    [24] RIEGER R, GERSHWIN ME. The X and why of xenobiotics in primary biliary cirrhosis[J]. J Autoimmun, 2007, 28(2-3): 76-84. DOI: 10.1016/j.jaut.2007.02.003.
    [25] RIEGER R, LEUNG PS, JEDDELOH MR, et al. Identification of 2-nonynoic acid, a cosmetic component, as a potential trigger of primary biliary cirrhosis[J]. J Autoimmun, 2006, 27(1): 7-16. DOI: 10.1016/j.jaut.2006.06.002.
    [26] AMANO K, LEUNG PS, RIEGER R, et al. Chemical xenobiotics and mitochondrial autoantigens in primary biliary cirrhosis: Identification of antibodies against a common environmental, cosmetic, and food additive, 2-octynoic acid[J]. J Immunol, 2005, 174(9): 5874-5883. DOI: 10.4049/jimmunol.174.9.5874.
    [27] OPDYKE DL. Monographs on fragrance raw materials[J]. Food Cosmet Toxicol, 1979, 17(4): 357-390. DOI: 10.1016/0015-6264(79)90330-4.
    [28] WAKABAYASHI K, LIAN ZX, LEUNG PS, et al. Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease[J]. Hepatology, 2008, 48(2): 531-540. DOI: 10.1002/hep.22390.
    [29] WAKABAYASHI K, YOSHIDA K, LEUNG PS, et al. Induction of autoimmune cholangitis in non-obese diabetic (NOD). 1101 mice following a chemical xenobiotic immunization[J]. Clin Exp Immunol, 2009, 155(3): 577-586. DOI: 10.1111/j.1365-2249.2008.03837.x.
    [30] ALEXOPOULOU L, HOLT AC, MEDZHITOV R, et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3[J]. Nature, 2001, 413(6857): 732-738. DOI: 10.1038/35099560.
    [31] OKADA C, AKBAR SM, HORⅡKE N, et al. Early development of primary biliary cirrhosis in female C57BL/6 mice because of poly Ⅰ∶ C administration[J]. Liver Int, 2005, 25(3): 595-603. DOI: 10.1111/j.1478-3231.2005.01043.x.
    [32] JIANG T, HAN Z, CHEN S, et al. Resistance to activation-induced cell death and elevated FLIPL expression of CD4+ T cells in a polyI∶ C-induced primary biliary cirrhosis mouse model[J]. Clin Exp Med, 2009, 9(4): 269-276. DOI: 10.1007/s10238-009-0052-2.
    [33] AMBROSINI YM, YANG GX, ZHANG W, et al. The multi-hit hypothesis of primary biliary cirrhosis: Polyinosinic-polycytidylic acid (poly Ⅰ∶ C) and murine autoimmune cholangitis[J]. Clin Exp Immunol, 2011, 166(1): 110-120. DOI: 10.1111/j.1365-2249.2011.04453.x.
    [34] GERSHWIN ME, SELMI C, WORMAN HJ, et al. Risk factors and comorbidities in primary biliary cirrhosis: A controlled interview-based study of 1032 patients[J]. Hepatology, 2005, 42(5): 1194-1202. DOI: 10.1002/hep.20907.
    [35] HIRSCHFIELD GM, DYSON JK, ALEXANDER G, et al. The British Society of Gastroenterology/UK-PBC primary biliary cholangitis treatment and management guidelines[J]. Gut, 2018, 67(9): 1568-1594. DOI: 10.1136/gutjnl-2017-315259.
  • 加载中
表(1)
计量
  • 文章访问数:  1336
  • HTML全文浏览量:  428
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-20
  • 录用日期:  2021-08-25
  • 出版日期:  2021-10-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回