中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外泌体在非酒精性脂肪性肝病发生发展中的作用

徐昆 石清兰 胡振斌 张旭 李瑛

引用本文:
Citation:

外泌体在非酒精性脂肪性肝病发生发展中的作用

DOI: 10.3969/j.issn.1001-5256.2021.10.047
基金项目: 

国家自然科学基金 (82060847);

国家自然科学基金 (81760849);

广西自然科学基金面上项目 (2020JJA140365)

详细信息
    通信作者:

    石清兰,bshiqinglan@163.com

  • 中图分类号: R575.5

Role of exosomes in the development and progression of nonalcoholic fatty liver disease

Research funding: 

National Natural Science Foundation of China (82060847);

National Natural Science Foundation of China (81760849);

General Project of Natural Science Foundation of Guangxi Province (2020JJA140365)

  • 摘要: 随着肥胖和2型糖尿病等代谢性疾病的发病率增加,非酒精性脂肪性肝病(NAFLD)的发病率也逐年升高。NAFLD的潜在发病机制复杂,现尚未完全阐明。外泌体作为细胞间通讯的载体,在肝脏疾病的发生发展中发挥着重要作用。总结了外泌体在NAFLD发病过程中的作用机制及其对脂质代谢、胰岛素抵抗、肝脏炎症和纤维化的影响。指出了外泌体在治疗和诊断疾病方面的巨大潜力。

     

  • [1] DORAIRAJ V, SULAIMAN SA, ABU N, et al. Extracellular vesicles in the development of the non-alcoholic fatty liver disease: An update[J]. Biomolecules, 2020, 10(11): 1494. DOI: 10.3390/biom10111494.
    [2] WU TF, LIAO XH, ZHONG BH. Epidemiology of nonalcoholic fatty liver disease in some regions of China[J]. J Clin Hepatol, 2020, 36(6): 1370-1373. DOI: 10.3969/j.issn.1001-5256.2020.06.039.

    吴挺丰, 廖献花, 钟碧慧. 中国部分地区非酒精性脂肪肝病的流行情况[J]. 临床肝胆病杂志, 2020, 36(6): 1370-1373. DOI: 10.3969/j.issn.1001-5256.2020.06.039.
    [3] YOUNOSSI Z, TACKE F, ARRESE M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Hepatology, 2019, 69(6): 2672-2682. DOI: 10.1002/hep.30251.
    [4] CAI S, CHENG X, PAN X, et al. Emerging role of exosomes in liver physiology and pathology[J]. Hepatol Res, 2017, 47(2): 194-203. DOI: 10.1111/hepr.12794.
    [5] HERNÁNDEZ A, ARAB JP, REYES D, et al. Extracellular vesicles in NAFLD/ALD: From pathobiology to therapy[J]. Cells, 2020, 9(4): 817. DOI: 10.3390/cells9040817.
    [6] LU R, HONG TP. Roles of abnormal lipid metabolism in pathogenesis of non-alcoholic fatty liver disease[J]. J Clin Hepatol, 2015, 31(7): 1050-1054. DOI: 10.3969/j.issn.1001-5256.2015.07.013.

    路然, 洪天配. 脂质代谢紊乱导致非酒精性脂肪性肝病的发病机制[J]. 临床肝胆病杂志, 2015, 31(7): 1050-1054. DOI: 10.3969/j.issn.1001-5256.2015.07.013.
    [7] LI Y, LUAN Y, LI J, et al. Exosomal miR-199a-5p promotes hepatic lipid accumulation by modulating MST1 expression and fatty acid metabolism[J]. Hepatol Int, 2020, 14(6): 1057-1074. DOI: 10.1007/s12072-020-10096-0.
    [8] WANG W, ZHU N, YAN T, et al. The crosstalk: Exosomes and lipid metabolism[J]. Cell Commun Signal, 2020, 18(1): 119. DOI: 10.1186/s12964-020-00581-2.
    [9] RONG B, FENG R, LIU C, et al. Reduced delivery of epididymal adipocyte-derived exosomal resistin is essential for melatonin ameliorating hepatic steatosis in mice[J]. J Pineal Res, 2019, 66(4): e12561. DOI: 10.1111/jpi.12561.
    [10] CHEN Y, SUN H, BAI Y, et al. Gut dysbiosis-derived exosomes trigger hepatic steatosis by transiting HMGB1 from intestinal to liver in mice[J]. Biochem Biophys Res Commun, 2019, 509(3): 767-772. DOI: 10.1016/j.bbrc.2018.12.180.
    [11] ZHANG Y, YU M, DAI M, et al. miR-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting WISP2[J]. J Cell Sci, 2017, 130(6): 1158-1168. DOI: 10.1242/jcs.197764.
    [12] DAI M, YU M, ZHANG Y, et al. Exosome-like vesicles derived from adipose tissue provide biochemical cues for adipose tissue regeneration[J]. Tissue Eng Part A, 2017, 23(21-22): 1221-1230. DOI: 10.1089/ten.TEA.2017.0045.
    [13] ZHONG QH, HUANG B, LU W, et al. Adipose stem cell-derived exosomes carry miR-27 to inhibit browning of white adipose[J]. Tianjin Med J, 2020, 48(3): 165-170. DOI: 10.11958/20192867.

    钟琼慧, 黄波, 卢婉, 等. 脂肪干细胞来源外泌体携带miR-27抑制白色脂肪的棕色化[J]. 天津医药, 2020, 48(3): 165-170. DOI: 10.11958/20192867.
    [14] SONG M, HAN L, CHEN FF, et al. Adipocyte-derived exosomes carrying sonic hedgehog mediate m1 macrophage polarization-induced insulin resistance via Ptch and PI3K pathways[J]. Cell Physiol Biochem, 2018, 48(4): 1416-1432. DOI: 10.1159/000492252.
    [15] DENG ZB, POLIAKOV A, HARDY RW, et al. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance[J]. Diabetes, 2009, 58(11): 2498-2505. DOI: 10.2337/db09-0216.
    [16] YUASA T, AMO-SHIINOKI K, ISHIKURA S, et al. Sequential cleavage of insulin receptor by calpain 2 and γ-secretase impairs insulin signalling[J]. Diabetologia, 2016, 59(12): 2711-2721. DOI: 10.1007/s00125-016-4102-5.
    [17] KUMAR A, SUNDARAM K, MU J, et al. High-fat diet-induced upregulation of exosomal phosphatidylcholine contributes to insulin resistance[J]. Nat Commun, 2021, 12(1): 213. DOI: 10.1038/s41467-020-20500-w.
    [18] CHEN YH, HENEIDI S, LEE JM, et al. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance[J]. Diabetes, 2013, 62(7): 2278-2286. DOI: 10.2337/db12-0963.
    [19] WEN F, YANG Y, JIN D, et al. MiRNA-145 is involved in the development of resistin-induced insulin resistance in HepG2 cells[J]. Biochem Biophys Res Commun, 2014, 445(2): 517-523. DOI: 10.1016/j.bbrc.2014.02.034.
    [20] XIE J, HAN ZM, YIN WL. The mechanism of miR-27a induced insulin resistance on 3T3-L1 adipocyte cells[J]. Anhui Med J, 2019, 23(12): 2378-2381. DOI: 10.3969/j.issn.1009-6469.2019.12.011.

    谢军, 韩造木, 尹琬凌. 微RNA-27a介导3T3-L1脂肪细胞胰岛素抵抗的作用机制[J]. 安徽医药, 2019, 23(12): 2378-2381. DOI: 10.3969/j.issn.1009-6469.2019.12.011.
    [21] SU T, XIAO YZ, XIAO Y, et al. Bone marrow mesenchymal stem cells-derived exosomal MiR-29b-3p regulates aging-associated insulin resistance[J]. ACS Nano, 2019, 13(2): 2450-2462. DOI: 10.1021/acsnano.8b09375.
    [22] LI F, LI H, JIN X, et al. Adipose-specific knockdown of Sirt1 results in obesity and insulin resistance by promoting exosomes release[J]. Cell Cycle, 2019, 18(17): 2067-2082. DOI: 10.1080/15384101.2019.1638694.
    [23] TIAN F, TANG P, SUN Z, et al. MiR-210 in exosomes derived from macrophages under high glucose promotes mouse diabetic obesity pathogenesis by suppressing NDUFA4 expression[J]. J Diabetes Res, 2020, 2020: 6894684. DOI: 10.1155/2020/6894684.
    [24] PAN Y, HUI X, HOO R, et al. Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation[J]. J Clin Invest, 2019, 129(2): 834-849. DOI: 10.1172/JCI123069.
    [25] ZHAO Z, ZHONG L, LI P, et al. Cholesterol impairs hepatocyte lysosomal function causing M1 polarization of macrophages via exosomal miR-122-5p[J]. Exp Cell Res, 2020, 387(1): 111738. DOI: 10.1016/j.yexcr.2019.111738.
    [26] LIU XL, PAN Q, CAO HX, et al. Lipotoxic hepatocyte-derived exosomal microRNA 192-5p activates macrophages through Rictor/Akt/Forkhead box transcription factor O1 signaling in nonalcoholic fatty liver disease[J]. Hepatology, 2020, 72(2): 454-469. DOI: 10.1002/hep.31050.
    [27] HIRSOVA P, GORES GJ. Death receptor-mediated cell death and proinflammatory signaling in nonalcoholic steatohepatitis[J]. Cell Mol Gastroenterol Hepatol, 2015, 1(1): 17-27. DOI: 10.1016/j.jcmgh.2014.11.005.
    [28] KAKAZU E, MAUER AS, YIN M, et al. Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1α-dependent manner[J]. J Lipid Res, 2016, 57(2): 233-245. DOI: 10.1194/jlr.M063412.
    [29] ZEHRA M, CURRY JC, PILLAI SS, et al. Elucidating potential profibrotic mechanisms of emerging biomarkers for early prognosis of hepatic fibrosis[J]. Int J Mol Sci, 2020, 21(13): 4737. DOI: 10.3390/ijms21134737.
    [30] KIM JH, LEE CH, LEE SW. Exosomal transmission of microRNA from HCV replicating cells stimulates transdifferentiation in hepatic stellate cells[J]. Mol Ther Nucleic Acids, 2019, 14: 483-497. DOI: 10.1016/j.omtn.2019.01.006.
    [31] CHEN L, YAO X, YAO H, et al. Exosomal miR-103-3p from LPS-activated THP-1 macrophage contributes to the activation of hepatic stellate cells[J]. FASEB J, 2020, 34(4): 5178-5192. DOI: 10.1096/fj.201902307RRR.
    [32] LIU R, LI X, ZHU W, et al. Cholangiocyte-derived exosomal long noncoding RNA H19 promotes hepatic stellate cell activation and cholestatic liver fibrosis[J]. Hepatology, 2019, 70(4): 1317-1335. DOI: 10.1002/hep.30662.
    [33] FANG PP, PAN CW, LIN W, et al. ASK1 enhances angiotensin Ⅱ-Induced liver fibrosis in vitro by mediating endoplasmic reticulum stress-dependent exosomes[J]. Mediators Inflamm, 2020, 2020: 8183713. DOI: 10.1155/2020/8183713.
    [34] CSAK T, BALA S, LIPPAI D, et al. MicroRNA-122 regulates hypoxia-inducible factor-1 and vimentin in hepatocytes and correlates with fibrosis in diet-induced steatohepatitis[J]. Liver Int, 2015, 35(2): 532-541. DOI: 10.1111/liv.12633.
    [35] LI CJ, FANG QH, LIU ML, et al. Current understanding of the role of adipose-derived extracellular vesicles in metabolic homeostasis and diseases: Communication from the distance between cells/tissues[J]. Theranostics, 2020, 10(16): 7422-7435. DOI: 10.7150/thno.42167.
    [36] WAN K, ZHANG Y, LIN Q, et al. Serum exosome microRNA-218 expression level and prognosis of liver cancer[J]. Traum Crit Med, 2020, 8(4): 286-289, 293. DOI: 10.16048/j.issn.2095-5561.2020.04.18.

    万科, 张易, 林强, 等. 血清外泌体微小核糖核酸-218表达水平与肝癌预后研究[J]. 创伤与急危重病医学, 2020, 8(4): 286-289, 293. DOI: 10.16048/j.issn.2095-5561.2020.04.18.
  • 加载中
计量
  • 文章访问数:  710
  • HTML全文浏览量:  111
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-18
  • 录用日期:  2021-03-15
  • 出版日期:  2021-10-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回