中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

饮食-肠道菌群轴对非酒精性脂肪性肝病的影响

曾胜澜 张荣臻 王娜 王挺帅 谭丽婷 毛德文

刘明君, 刘颖娟, 杨桂, 等. 葡萄糖-6-磷酸脱氢酶表达与肝细胞癌预后的关系[J]. 临床肝胆病杂志, 2021, 37(8): 1856-1860. DOI: 10.3969/j.issn.1001-5256.2021.08.021.
引用本文: 刘明君, 刘颖娟, 杨桂, 等. 葡萄糖-6-磷酸脱氢酶表达与肝细胞癌预后的关系[J]. 临床肝胆病杂志, 2021, 37(8): 1856-1860. DOI: 10.3969/j.issn.1001-5256.2021.08.021.
LIU MJ, LIU YJ, YANG G, et al. Association of the expression of glucose-6-phosphate dehydrogenase with the prognosis of hepatocellular carcinoma[J]. J Clin Hepatol, 2021, 37(8): 1856-1860. DOI: 10.3969/j.issn.1001-5256.2021.08.021.
Citation: LIU MJ, LIU YJ, YANG G, et al. Association of the expression of glucose-6-phosphate dehydrogenase with the prognosis of hepatocellular carcinoma[J]. J Clin Hepatol, 2021, 37(8): 1856-1860. DOI: 10.3969/j.issn.1001-5256.2021.08.021.

饮食-肠道菌群轴对非酒精性脂肪性肝病的影响

DOI: 10.3969/j.issn.1001-5256.2021.11.041
基金项目: 

国家自然科学基金 (81960841);

国家自然科学基金 (81774236);

国家自然科学基金 (82060848);

广西自然科学基金 (2020JJA140273);

广西科技计划项目 (GK AD17129001);

国家中医药管理局"慢性重型肝炎解毒化瘀"重点研究室 

详细信息
    通信作者:

    毛德文,mdwboshi2005@163.com

  • 中图分类号: R575.5

Effect of diet-gut microbiota axis on nonalcoholic fatty liver disease

Research funding: 

National Natural Science Foundation of China (81960841);

National Natural Science Foundation of China (81774236);

National Natural Science Foundation of China (82060848);

National Natural Science Foundation of Guangxi Province (2020JJA140273);

Guangxi Science and Technology Program Project (GK AD17129001);

State Administration of Traditional Chinese Medicine Key Laboratory of Detoxicating and Stasis-resolving Therapy for Severe Chronic Hepatitis 

  • 摘要: 非酒精性脂肪性肝病(NAFLD)发病率日益增高。饮食被认为是调节肠道菌群组成的主要驱动力之一,肠道和肝脏通过门静脉联系密切,因此肠道微生物群的改变可能影响肝功能,促进炎症,胰岛素抵抗和脂肪变性,从而引起NAFLD。将重点讨论饮食、肠道菌群和肝脏之间的关系,以及该轴如何促进NAFLD的进展,并总结由于肠道菌群失调而引起的潜在机制改变及相关治疗。

     

  • 肝细胞癌(HCC)是常见的消化系统恶性肿瘤之一, 其恶性程度高, 增殖能力强, 患者预后差。2018年, 全球新发肝癌84.1万例, 在恶性肿瘤发病率排名第6位, 死亡78.1万例[1]; 2015年我国的新发肝癌约37.0万例, 死亡人数约32.6万例[2]。因此, 寻找肝癌预后评估的生物标志物具有重要的临床意义。

    葡萄糖-6-磷酸脱氢酶(glucose-6-phosphate dehydrogenase, G6PD是参与磷酸戊糖途径(pentose phosphate pathway, PPP)的第一种酶, 也是PPP的限速酶, 糖酵解产生的6-磷酸葡萄糖在G6PD的催化下进入PPP, 产生细胞活动所需要的能量[3]。研究发现, G6PD在黑色素瘤[4]、乳腺癌[5]、肺癌[6-7]、肝癌[8-9]、结直肠癌[10]等恶性肿瘤中表达升高, 在肿瘤的发生发展中起重要作用。

    淋巴细胞/单核细胞比值(LMR)是反映机体炎症和免疫状态的一项敏感指标, 已被证实可用于预测卵巢癌[11]、肺癌[12]和肝癌[13]等实体肿瘤的预后。本文通过分析G6PD在肝癌组织中的表达与预后的关系, 以及不同G6PD表达水平患者的临床指标差异, 探讨G6PD表达在HCC预后评估中的临床价值。

    收集2016年6月—2018年1月在本院就诊的44例首诊HCC患者的肝癌组织和相应的癌旁组织标本, 及其临床信息和实验室检查结果。纳入标准: (1)所有患者均符合《原发性肝癌诊疗规范(2019年版)》[14]; (2)有完整的基本资料和实验室检测结果(肝肾功能、血常规、凝血指标和肿瘤标志物)。排除标准: (1)合并其他恶性肿瘤或有全身感染症状; (2)术前接受过其他方式治疗。

    采用贝克曼奥林巴斯5800全自动生化分析仪检测肝肾功能, 贝克曼库尔特全自动血细胞分析仪H750检测血常规。贝克曼ACLTOP检测凝血指标。BeckmanDX1800全自动化学发光仪测定AFP。BIO-RAD荧光定量PCR系统CFX ConnectTM检测基因表达。

    使用Trizol(美国Thermo公司)提取组织RNA。逆转录试剂盒FSQ-301(日本TOYOBO公司)合成cDNA。β-actin为内参基因, 进行qPCR。G6PD: 上游5′-AACATCGCCTGCGTTATCCTC-3′, 下游5′-ACGTCCCGGATGATCCCAA-3′; β-actin: 上游5′-CCTCGCCTTTGCCGATCC-3′, 下游5′-GGATCTTCATGAGGTAGTC AGTC-3′。

    用Gene Expression Profiling Interactive Analysis(GEPIA)数据库分析G6PD在HCC组织中的表达。Kaplan Meier Plotter(KM plotter)数据库评估HCC组织中G6PD表达水平与预后。

    本研究方案经由武汉大学中南医院伦理委员会审批, 批号: 2017058。

    采用SPSS 21.0软件进行数据分析。正态分布的计量资料以x±s表示, 2组间比较采用t检验; 偏态分布的计量资料以M(P25~P75)表示, 2组间比较采用Mann-Whitney U检验。计数资料2组间比较采用Fisher确切概率法; Spearman相关用来分析G6PD与LMR的相关性; 采用Kaplan-Meier法绘制生存曲线。P<0.05为差异有统计学意义。

    运用RT-qPCR检测44例HCC患者肝癌组织和癌旁肝脏组织中G6PD的mRNA表达水平。结果发现, G6PD mRNA在癌组织中表达明显高于癌旁组织(Z=-3.221, P=0.001), 癌组织G6PD表达水平是癌旁组织的2.09倍(图 1a)。

    图  1  肝癌组织中G6PD mRNA表达及其与预后评估
    注: a, HCC患者癌组织和癌旁组织G6PD mRNA表达水平比较; b, GEPIA数据库中G6PD在肝癌组织中表达; c, G6PD高表达和低表达患者总生存曲线; d, G6PD高表达和低表达患者无进展生存曲线。

    根据G6PD mRNA表达水平中位数, 将患者分为G6PD高表达组(n=22)及低表达组(n=22)。两组患者在年龄、性别、HBV DNA检测阳性率和TNM分期上差异均无统计学意义(P值均>0.05)(表 1)。

    表  1  HCC患者低G6PD组和高G6PD组的基本资料
    指标 低G6PD组(n=22) 高G6PD组(n=22) P
    年龄(岁) 57.04±9.88 52.00±8.74 0.080
    男/女(例) 17/5 17/5 1.000
    HBV DNA(例) 0.537
      <500 IU/ml 7 10
      ≥500 IU/ml 15 12
    TNM分期(例) 0.736
      Ⅰ~Ⅱ 15 17
      Ⅲ~Ⅳ 7 5
    下载: 导出CSV 
    | 显示表格

    运用GEPIA数据库分析肝癌组织(n=369)和癌旁组织(n=160)中的G6PD表达。结果发现, G6PD在癌组织中表达明显高于癌旁组织(P<0.01)(图 1b)。运用KM plotter数据库, 分析两组患者预后差异。结果发现, G6PD高表达是不良预后的危险因素: 总生存期(HR=1.84, 95%CI: 1.30~2.61; P=0.000 52)和无进展生存期(HR=1.75, 95%CI: 1.27~2.42;P=0.000 54), 即G6PD高表达患者预后不良(图 1cd)。

    为了进一步比较肝癌患者中G6PD mRNA表达与临床指标的关系, 比较HCC患者低G6PD组(n=22)和高G6PD组(n=22)的肝功能、血常规、凝血功能和AFP差异。

    结果显示, LMR在高G6PD组患者中明显低于低G6PD组(P=0.011), 其他指标两组间差异均无统计学意义(P值均>0.05)(表 2)。

    表  2  肝癌患者G6PD表达水平与术前临床指标关系
    指标 低G6PD组(n=22) 高G6PD组(n=22) 统计值 P
    ALT(U/L) 41.09±28.89 43.64±39.56 t=-0.244 0.809
    AST(U/L) 49.00±33.74 47.23±30.33 t=0.183 0.855
    总胆红素(μmol/L) 16.60±6.83 20.44±8.93 t=-1.604 0.116
    直接胆红素(μmol/L) 4.49±2.82 4.94±2.20 t=-0.579 0.566
    间接胆红素(μmol/L) 12.35±4.96 15.05±7.87 t=-1.335 0.187
    TP(g/L) 66.80±5.96 67.58±6.27 t=-0.422 0.675
    Alb(g/L) 39.66±3.75 39.65±5.63 t=0.006 0.995
    Glb(g/L) 27.14±4.17 27.92±4.82 t=-0.575 0.568
    GGT(U/L) 61.00±46.68 66.05±43.69 t=-0.366 0.716
    ALP(U/L) 103.82±52.41 108.05±56.92 t=-0.256 0.799
    WBC(×109/L) 5.35±1.66 5.61±2.34 t=-0.413 0.682
    RBC(×1012/L) 4.24±0.85 4.41±0.70 t=-0.691 0.494
    HGB(g/L) 129.59±25.11 135.34±18.16 t=-0.844 0.404
    PLT(×109/L) 150.10±54.03 173.19±82.75 t=-1.052 0.229
    中性粒细胞计数(×109/L) 3.41±1.64 3.80±1.80 t=-0.717 0.478
    淋巴细胞计数(×109/L) 1.39±0.55 1.19±0.59 t=1.116 0.271
    单核细胞计数(×109/L) 0.42±0.14 0.50±0.21 t=-1.531 0.134
    LMR 3.49±1.44 2.45±0.96 t=2.681 0.011
    PT(s) 11.59±1.06 11.70±0.88 t=-0.348 0.730
    INR 1.06±0.10 1.07±0.08 t=-0.295 0.770
    PTTA(%) 97.81±14.29 97.15±15.26 t=0.143 0.887
    APTT(s) 32.20±2.78 32.63±3.65 t=-0.433 0.668
    TT(s) 14.97±1.22 14.30±1.77 t=1.438 0.158
    FIB(mg/dl) 286.61±56.74 308.19±81.70 t=-0.994 0.326
    AFP(μg/L) 143.80(6.22~2 386.96) 1 481.35(56.20~4 453.63) Z=-1.723 0.085
    下载: 导出CSV 
    | 显示表格

    进一步分析G6PD mRNA表达量与LMR相关性, 结果显示G6PD表达水平与LMR呈负相关(r=-0.439, P=0.005)(图 2), 提示G6PD表达与免疫功能、炎症状态有关。

    图  2  G6PD mRNA表达与LMR相关性

    HCC是一种进展迅速, 恶性程度高, 预后极差的肿瘤[15]。随着各种分子生物学层面的研究深入, 越来越多的研究表明肝癌的发生发展常伴随着糖代谢紊乱[16]、多种基因表达改变和信号通路异常[17]

    肿瘤细胞由于瓦伯格效应(Warburg effect)主要通过糖酵解的方式分解葡萄糖获能, 所产生的6-磷酸葡萄糖可以通过PPP为核苷酸、脂质等生物分子合成提供前体以及NADPH[16, 18]。本研究发现G6PD基因在HCC中表达明显高于配对癌旁组织。相关研究指出, PI3K/Akt、Ras和Src等促癌信号通路的过度激活, 可通过翻译后调控机制促进G6PD激活[3], 从而引起肿瘤组织中G6PD表达升高, 产生的高水平NADPH可以减少细胞活性氧(ROS)的生成[19]。ROS在多种癌症中被检测到, 一方面被认为可以激活肿瘤信号, 但同时ROS累积也能启动氧化应激诱导肿瘤细胞的死亡, 肿瘤细胞G6PD表达升高, 可以减少升高的ROS, 建立氧化还原平衡[20]。同时细胞内ROS累积会引起NF-κB的激活, 可引起大量细胞因子如IL-6、IL-24、IL-32等的释放, 细胞因子招募单核细胞、巨噬细胞到肿瘤部位, 引起肿瘤微环境炎症反应, 促进肿瘤发展[21]

    已经有研究证实HBV感染会引起G6PD的升高[22], 同时HBV感染可能会引起肿瘤微环境炎症反应, 引起免疫细胞数量和状态改变[23]。而高LMR是多种癌症预后的保护因素[9, 24], 在肝癌的相关研究[25]中, 肝癌术前LMR可分为高值组(≥3.03)和低值组(<3.03), 高LMR组患者肝癌切除术后5年生存率较好。也有学者[26]指出肝移植术后LMR<2.75的患者的5年生存率明显低于LMR≥2.75的患者。而本研究发现LMR在G6PD高表达组中明显低于G6PD低表达组, 且肝癌组织中G6PD表达水平与LMR呈负相关, 提示G6PD高表达的HCC患者不良预后可能与肿瘤微环境炎症有关。

    综上, 在肝癌组织中高G6PD的表达与不良预后有关, G6PD高表达和低表达组的LMR有明显差异, 且G6PD的表达量与LMR呈负相关, 提示G6PD表达可能与肿瘤微环境炎症反应有关。本研究所用样本量较小, 具体的分子机制尚需进一步研究。

  • [1] YOUNOSSI Z, TACKE F, ARRESE M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Hepatology, 2019, 69(6): 2672-2682. DOI: 10.1002/hep.30251.
    [2] ADAMS DH, EKSTEEN B, CURBISHLEY SM. Immunology of the gut and liver: A love/hate relationship[J]. Gut, 2008, 57(6): 838-848. DOI: 10.1136/gut.2007.122168.
    [3] Human Microbiome Project Consortium. A framework for human microbiome research[J]. Nature, 2012, 486(7402): 215-221. DOI: 10.1038/nature11209.
    [4] PENG C, XU X, LI Y, et al. Sex-specific association between the gut microbiome and high-fat diet-induced metabolic disorders in mice[J]. Biol Sex Differ, 2020, 11(1): 5. DOI: 10.1186/s13293-020-0281-3.
    [5] JONES RB, ALDERETE TL, KIM JS, et al. High intake of dietary fructose in overweight/obese teenagers associated with depletion of Eubacterium and Streptococcus in gut microbiome[J]. Gut Microbes, 2019, 10(6): 712-719. DOI: 10.1080/19490976.2019.1592420.
    [6] JAMAR G, SANTAMARINA AB, DIAS GC, et al. Relationship between fatty acids intake and Clostridium coccoides in obese individuals with metabolic syndrome[J]. Food Res Int, 2018, 113: 86-92. DOI: 10.1016/j.foodres.2018.07.002.
    [7] ALISI A, BEDOGNI G, BAVIERA G, et al. Randomised clinical trial: The beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis[J]. Aliment Pharmacol Ther, 2014, 39(11): 1276-1285. DOI: 10.1111/apt.12758.
    [8] WU S, LIAO AP, XIA Y, et al. Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine[J]. Am J Pathol, 2010, 177(2): 686-697. DOI: 10.2353/ajpath.2010.090998.
    [9] STANHOPE KL. Sugar consumption, metabolic disease and obesity: The state of the controversy[J]. Crit Rev Clin Lab Sci, 2016, 53(1): 52-67. DOI: 10.3109/10408363.2015.1084990.
    [10] DEWDNEY B, ROBERTS A, QIAO L, et al. A sweet connection? Fructose's role in hepatocellular carcinoma[J]. Biomolecules, 2020, 10(4): 496. DOI: 10.3390/biom10040496.
    [11] HARING SJ, HARRIS RB. The relation between dietary fructose, dietary fat and leptin responsiveness in rats[J]. Physiol Behav, 2011, 104(5): 914-922. DOI: 10.1016/j.physbeh.2011.05.032.
    [12] WARDANI HA, RAHMADI M, ARDIANTO C, et al. Development of nonalcoholic fatty liver disease model by high-fat diet in rats[J]. J Basic Clin Physiol Pharmacol, 2019, 30(6): 20190258. DOI: 10.1515/jbcpp-2019-0258.
    [13] CHIU CC, CHING YH, LI YP, et al. Nonalcoholic fatty liver disease is exacerbated in high-fat diet-fed gnotobiotic mice by colonization with the gut microbiota from patients with nonalcoholic steatohepatitis[J]. Nutrients, 2017, 9(11): 1220. DOI: 10.3390/nu9111220.
    [14] BIOLATO M, MANCA F, MARRONE G, et al. Intestinal permeability after Mediterranean diet and low-fat diet in non-alcoholic fatty liver disease[J]. World J Gastroenterol, 2019, 25(4): 509-520. DOI: 10.3748/wjg.v25.i4.509.
    [15] RISTIC-MEDIC D, KOVACIC M, TAKIC M, et al. Calorie-restricted mediterranean and low-fat diets affect fatty acid status in individuals with nonalcoholic fatty liver disease[J]. Nutrients, 2020, 13(1): 15. DOI: 10.3390/nu13010015.
    [16] BHAT SF, PINNEY SE, KENNEDY KM, et al. Exposure to high fructose corn syrup during adolescence in the mouse alters hepatic metabolism and the microbiome in a sex-specific manner[J]. J Physiol, 2021, 599(5): 1487-1511. DOI: 10.1113/JP280034.
    [17] PERNG W, HARTE R, RINGHAM BM, et al. A prudent dietary pattern is inversely associated with liver fat content among multi-ethnic youth[J]. Pediatr Obes, 2021, 16(6): e12758. DOI: 10.1111/ijpo.12758.
    [18] CHEN J, HUANG Y, XIE H, et al. Impact of a low-carbohydrate and high-fiber diet on nonalcoholic fatty liver disease[J]. Asia Pac J Clin Nutr, 2020, 29(3): 483-490. DOI: 10.6133/apjcn.202009_29(3).0006.
    [19] RUUSKANEN MO, ÅBERG F, MÄNNISTÖ V, et al. Links between gut microbiome composition and fatty liver disease in a large population sample[J]. Gut Microbes, 2021, 13(1): 1-22. DOI: 10.1080/19490976.2021.1888673.
    [20] ZHANG CX, GUO LK, ZHANG LL, et al. Interaction between Helicobacter pylori infection and polymorphisms of PPAR-γ2 gene Pro12Ala and GPx-1 gene Pro198Leu and its association with nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2019, 35(7): 1551-1559. DOI: 10.3969/j.issn.1001-5256.2019.07.026.

    张超贤, 郭李柯, 张利利, 等. 幽门螺杆菌感染与PPARγ2基因Pro12Ala、GPx-1基因Pro198Leu多态性的交互作用和非酒精性脂肪性肝病的关系[J]. 临床肝胆病杂志, 2019, 35(7): 1551-1559. DOI: 10.3969/j.issn.1001-5256.2019.07.026.
    [21] LU Y, FAN C, LI P, et al. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota[J]. Sci Rep, 2016, 6: 37589. DOI: 10.1038/srep37589.
    [22] YU C, LIU S, CHEN L, et al. Effect of exercise and butyrate supplementation on microbiota composition and lipid metabolism[J]. J Endocrinol, 2019, 243(2): 125-135. DOI: 10.1530/JOE-19-0122.
    [23] ZHAI S, QIN S, LI L, et al. Dietary butyrate suppresses inflammation through modulating gut microbiota in high-fat diet-fed mice[J]. FEMS Microbiol Lett, 2019, 366(13): fnz153. DOI: 10.1093/femsle/fnz153.
    [24] ZHAO L, ZHANG Q, MA W, et al. A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota[J]. Food Funct, 2017, 8(12): 4644-4656. DOI: 10.1039/c7fo01383c.
    [25] MOUZAKI M, LOOMBA R. Insights into the evolving role of the gut microbiome in nonalcoholic fatty liver disease: Rationale and prospects for therapeutic intervention[J]. Therap Adv Gastroenterol, 2019, 12: 1756284819858470. DOI: 10.1177/1756284819858470.
    [26] SEGHIERI M, CHRISTENSEN AS, ANDERSEN A, et al. Future perspectives on GLP-1 receptor agonists and GLP-1/glucagon receptor co-agonists in the treatment of NAFLD[J]. Front Endocrinol (Lausanne), 2018, 9: 649. DOI: 10.3389/fendo.2018.00649.
    [27] WAHLSTRÖM A, SAYIN SI, MARSCHALL HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1): 41-50. DOI: 10.1016/j.cmet.2016.05.005.
    [28] FRIEDMAN ES, LI Y, SHEN TD, et al. FXR-dependent modulation of the human small intestinal microbiome by the bile acid derivative obeticholic acid[J]. Gastroenterology, 2018, 155(6): 1741-1752. e5. DOI: 10.1053/j.gastro.2018.08.022.
    [29] NILSSON I, LEE SY, SAWYER WS, et al. Metabolic phospholipid labeling of intact bacteria enables a fluorescence assay that detects compromised outer membranes[J]. J Lipid Res, 2020, 61(6): 870-883. DOI: 10.1194/jlr.RA120000654.
    [30] LEE J, RIDGWAY ND. Substrate channeling in the glycerol-3-phosphate pathway regulates the synthesis, storage and secretion of glycerolipids[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2020, 1865(1): 158438. DOI: 10.1016/j.bbalip.2019.03.010.
    [31] WANG B, JIANG X, CAO M, et al. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease[J]. Sci Rep, 2016, 6: 32002. DOI: 10.1038/srep32002.
    [32] CANYELLES M, TONDO M, CEDÓ L, et al. Trimethylamine N-Oxide: A link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function[J]. Int J Mol Sci, 2018, 19(10): 3228. DOI: 10.3390/ijms19103228.
    [33] CHEN YM, LIU Y, ZHOU RF, et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults[J]. Sci Rep, 2016, 6: 19076. DOI: 10.1038/srep19076.
    [34] GAO X, XU J, JIANG C, et al. Fish oil ameliorates trimethylamine N-oxide-exacerbated glucose intolerance in high-fat diet-fed mice[J]. Food Funct, 2015, 6(4): 1117-1125. DOI: 10.1039/c5fo00007f.
    [35] TESCHKE R. Alcoholic liver disease: Alcohol metabolism, cascade of molecular mechanisms, cellular targets, and clinical aspects[J]. Biomedicines, 2018, 6(4): 106. DOI: 10.3390/biomedicines6040106.
    [36] ZHU L, BAKER SS, GILL C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH[J]. Hepatology, 2013, 57(2): 601-609. DOI: 10.1002/hep.26093.
    [37] ROBINSON KE, SHAH VH. Pathogenesis and pathways: Nonalcoholic fatty liver disease & alcoholic liver disease[J]. Transl Gastroenterol Hepatol, 2020, 5: 49. DOI: 10.21037/tgh.2019.12.05.
    [38] SUNG H, KIM SW, HONG M, et al. Microbiota-based treatments in alcoholic liver disease[J]. World J Gastroenterol, 2016, 22(29): 6673-6682. DOI: 10.3748/wjg.v22.i29.6673.
    [39] FIALHO A, FIALHO A, THOTA P, et al. Small intestinal bacterial overgrowth is associated with non-alcoholic fatty liver disease[J]. J Gastrointestin Liver Dis, 2016, 25(2): 159-165. DOI: 10.15403/jgld.2014.1121.252.iwg.
    [40] BOHAN R, TIANYU X, TIANTIAN Z, et al. Gut microbiota: A potential manipulator for host adipose tissue and energy metabolism[J]. J Nutr Biochem, 2019, 64: 206-217. DOI: 10.1016/j.jnutbio.2018.10.020.
    [41] MACIEJEWSKA D, ŁUKOMSKA A, DEC K, et al. Diet-induced rat model of gradual development of non-alcoholic fatty liver disease (NAFLD) with lipopolysaccharides (LPS) secretion[J]. Diagnostics (Basel), 2019, 9(4): 205. DOI: 10.3390/diagnostics9040205.
    [42] BRANDL K, KUMAR V, ECKMANN L. Gut-liver axis at the frontier of host-microbial interactions[J]. Am J Physiol Gastrointest Liver Physiol, 2017, 312(5): G413-G413, 419. DOI: 10.1152/ajpgi.00361.2016.
    [43] ROEB E, STEFFEN HM, BANTEL H, et al. S2k Guideline non-alcoholic fatty liver disease[J]. Z Gastroenterol, 2015, 53(7): 668-723. DOI: 10.1055/s-0035-1553193.
    [44] ABENAVOLI L, MILIC N, PETA V, et al. Alimentary regimen in non-alcoholic fatty liver disease: Mediterranean diet[J]. World J Gastroenterol, 2014, 20(45): 16831-16840. DOI: 10.3748/wjg.v20.i45.16831.
    [45] KIRK EP, DONNELLY JE, SMITH BK, et al. Minimal resistance training improves daily energy expenditure and fat oxidation[J]. Med Sci Sports Exerc, 2009, 41(5): 1122-1129. DOI: 10.1249/MSS.0b013e318193c64e.
    [46] FUJIMOTO K, KIMURA Y, ALLEGRETTI JR, et al. Functional restoration of bacteriomes and viromes by fecal microbiota transplantation[J]. Gastroenterology, 2021, 160(6): 2089-2102. e12. DOI: 10.1053/j.gastro.2021.02.013.
    [47] ZHOU D, PAN Q, SHEN F, et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota[J]. Sci Rep, 2017, 7(1): 1529. DOI: 10.1038/s41598-017-01751-y.
    [48] FAMOURI F, SHARIAT Z, HASHEMIPOUR M, et al. Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents[J]. J Pediatr Gastroenterol Nutr, 2017, 64(3): 413-417. DOI: 10.1097/MPG.0000000000001422.
    [49] MANZHALⅡ E, VIRCHENKO O, FALALYEYEVA T, et al. Treatment efficacy of a probiotic preparation for non-alcoholic steatohepatitis: A pilot trial[J]. J Dig Dis, 2017, 18(12): 698-703. DOI: 10.1111/1751-2980.12561.
    [50] KOBYLIAK N, ABENAVOLI L, FALALYEYEVA T, et al. Beneficial effects of probiotic combination with omega-3 fatty acids in NAFLD: A randomized clinical study[J]. Minerva Med, 2018, 109(6): 418-428. DOI: 10.23736/S0026-4806.18.05845-7.
  • 期刊类型引用(1)

    1. 姚元谦,吕建林,柳琳琳,王光耀. 铁死亡基因及相关长链非编码RNA在肝细胞癌发生与预后中的作用. 中国医药导报. 2022(26): 9-14 . 百度学术

    其他类型引用(0)

  • 加载中
计量
  • 文章访问数:  674
  • HTML全文浏览量:  122
  • PDF下载量:  57
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-03-12
  • 录用日期:  2021-03-31
  • 出版日期:  2021-11-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

/

返回文章
返回