Effect of diet-gut microbiota axis on nonalcoholic fatty liver disease
-
摘要: 非酒精性脂肪性肝病(NAFLD)发病率日益增高。饮食被认为是调节肠道菌群组成的主要驱动力之一,肠道和肝脏通过门静脉联系密切,因此肠道微生物群的改变可能影响肝功能,促进炎症,胰岛素抵抗和脂肪变性,从而引起NAFLD。将重点讨论饮食、肠道菌群和肝脏之间的关系,以及该轴如何促进NAFLD的进展,并总结由于肠道菌群失调而引起的潜在机制改变及相关治疗。Abstract: The incidence rate of nonalcoholic fatty liver disease (NAFLD) is increasing. Diet is considered one of the main driving forces regulating the composition of intestinal microbiota, and the intestine and the liver are closely linked through the portal vein, so changes in gut microbiota may affect liver function and promote inflammation, insulin resistance, and steatosis, thereby causing NAFLD. This article elaborates on the relationship between diet, gut microbiota, and the liver and the research advances in how this axis promotes the progression of NAFLD, as well as the change in potential mechanism due to intestinal dysbacteriosis and related treatment methods.
-
[1] YOUNOSSI Z, TACKE F, ARRESE M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Hepatology, 2019, 69(6): 2672-2682. DOI: 10.1002/hep.30251. [2] ADAMS DH, EKSTEEN B, CURBISHLEY SM. Immunology of the gut and liver: A love/hate relationship[J]. Gut, 2008, 57(6): 838-848. DOI: 10.1136/gut.2007.122168. [3] Human Microbiome Project Consortium. A framework for human microbiome research[J]. Nature, 2012, 486(7402): 215-221. DOI: 10.1038/nature11209. [4] PENG C, XU X, LI Y, et al. Sex-specific association between the gut microbiome and high-fat diet-induced metabolic disorders in mice[J]. Biol Sex Differ, 2020, 11(1): 5. DOI: 10.1186/s13293-020-0281-3. [5] JONES RB, ALDERETE TL, KIM JS, et al. High intake of dietary fructose in overweight/obese teenagers associated with depletion of Eubacterium and Streptococcus in gut microbiome[J]. Gut Microbes, 2019, 10(6): 712-719. DOI: 10.1080/19490976.2019.1592420. [6] JAMAR G, SANTAMARINA AB, DIAS GC, et al. Relationship between fatty acids intake and Clostridium coccoides in obese individuals with metabolic syndrome[J]. Food Res Int, 2018, 113: 86-92. DOI: 10.1016/j.foodres.2018.07.002. [7] ALISI A, BEDOGNI G, BAVIERA G, et al. Randomised clinical trial: The beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis[J]. Aliment Pharmacol Ther, 2014, 39(11): 1276-1285. DOI: 10.1111/apt.12758. [8] WU S, LIAO AP, XIA Y, et al. Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine[J]. Am J Pathol, 2010, 177(2): 686-697. DOI: 10.2353/ajpath.2010.090998. [9] STANHOPE KL. Sugar consumption, metabolic disease and obesity: The state of the controversy[J]. Crit Rev Clin Lab Sci, 2016, 53(1): 52-67. DOI: 10.3109/10408363.2015.1084990. [10] DEWDNEY B, ROBERTS A, QIAO L, et al. A sweet connection? Fructose's role in hepatocellular carcinoma[J]. Biomolecules, 2020, 10(4): 496. DOI: 10.3390/biom10040496. [11] HARING SJ, HARRIS RB. The relation between dietary fructose, dietary fat and leptin responsiveness in rats[J]. Physiol Behav, 2011, 104(5): 914-922. DOI: 10.1016/j.physbeh.2011.05.032. [12] WARDANI HA, RAHMADI M, ARDIANTO C, et al. Development of nonalcoholic fatty liver disease model by high-fat diet in rats[J]. J Basic Clin Physiol Pharmacol, 2019, 30(6): 20190258. DOI: 10.1515/jbcpp-2019-0258. [13] CHIU CC, CHING YH, LI YP, et al. Nonalcoholic fatty liver disease is exacerbated in high-fat diet-fed gnotobiotic mice by colonization with the gut microbiota from patients with nonalcoholic steatohepatitis[J]. Nutrients, 2017, 9(11): 1220. DOI: 10.3390/nu9111220. [14] BIOLATO M, MANCA F, MARRONE G, et al. Intestinal permeability after Mediterranean diet and low-fat diet in non-alcoholic fatty liver disease[J]. World J Gastroenterol, 2019, 25(4): 509-520. DOI: 10.3748/wjg.v25.i4.509. [15] RISTIC-MEDIC D, KOVACIC M, TAKIC M, et al. Calorie-restricted mediterranean and low-fat diets affect fatty acid status in individuals with nonalcoholic fatty liver disease[J]. Nutrients, 2020, 13(1): 15. DOI: 10.3390/nu13010015. [16] BHAT SF, PINNEY SE, KENNEDY KM, et al. Exposure to high fructose corn syrup during adolescence in the mouse alters hepatic metabolism and the microbiome in a sex-specific manner[J]. J Physiol, 2021, 599(5): 1487-1511. DOI: 10.1113/JP280034. [17] PERNG W, HARTE R, RINGHAM BM, et al. A prudent dietary pattern is inversely associated with liver fat content among multi-ethnic youth[J]. Pediatr Obes, 2021, 16(6): e12758. DOI: 10.1111/ijpo.12758. [18] CHEN J, HUANG Y, XIE H, et al. Impact of a low-carbohydrate and high-fiber diet on nonalcoholic fatty liver disease[J]. Asia Pac J Clin Nutr, 2020, 29(3): 483-490. DOI: 10.6133/apjcn.202009_29(3).0006. [19] RUUSKANEN MO, ÅBERG F, MÄNNISTÖ V, et al. Links between gut microbiome composition and fatty liver disease in a large population sample[J]. Gut Microbes, 2021, 13(1): 1-22. DOI: 10.1080/19490976.2021.1888673. [20] ZHANG CX, GUO LK, ZHANG LL, et al. Interaction between Helicobacter pylori infection and polymorphisms of PPAR-γ2 gene Pro12Ala and GPx-1 gene Pro198Leu and its association with nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2019, 35(7): 1551-1559. DOI: 10.3969/j.issn.1001-5256.2019.07.026.张超贤, 郭李柯, 张利利, 等. 幽门螺杆菌感染与PPARγ2基因Pro12Ala、GPx-1基因Pro198Leu多态性的交互作用和非酒精性脂肪性肝病的关系[J]. 临床肝胆病杂志, 2019, 35(7): 1551-1559. DOI: 10.3969/j.issn.1001-5256.2019.07.026. [21] LU Y, FAN C, LI P, et al. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota[J]. Sci Rep, 2016, 6: 37589. DOI: 10.1038/srep37589. [22] YU C, LIU S, CHEN L, et al. Effect of exercise and butyrate supplementation on microbiota composition and lipid metabolism[J]. J Endocrinol, 2019, 243(2): 125-135. DOI: 10.1530/JOE-19-0122. [23] ZHAI S, QIN S, LI L, et al. Dietary butyrate suppresses inflammation through modulating gut microbiota in high-fat diet-fed mice[J]. FEMS Microbiol Lett, 2019, 366(13): fnz153. DOI: 10.1093/femsle/fnz153. [24] ZHAO L, ZHANG Q, MA W, et al. A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota[J]. Food Funct, 2017, 8(12): 4644-4656. DOI: 10.1039/c7fo01383c. [25] MOUZAKI M, LOOMBA R. Insights into the evolving role of the gut microbiome in nonalcoholic fatty liver disease: Rationale and prospects for therapeutic intervention[J]. Therap Adv Gastroenterol, 2019, 12: 1756284819858470. DOI: 10.1177/1756284819858470. [26] SEGHIERI M, CHRISTENSEN AS, ANDERSEN A, et al. Future perspectives on GLP-1 receptor agonists and GLP-1/glucagon receptor co-agonists in the treatment of NAFLD[J]. Front Endocrinol (Lausanne), 2018, 9: 649. DOI: 10.3389/fendo.2018.00649. [27] WAHLSTRÖM A, SAYIN SI, MARSCHALL HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1): 41-50. DOI: 10.1016/j.cmet.2016.05.005. [28] FRIEDMAN ES, LI Y, SHEN TD, et al. FXR-dependent modulation of the human small intestinal microbiome by the bile acid derivative obeticholic acid[J]. Gastroenterology, 2018, 155(6): 1741-1752. e5. DOI: 10.1053/j.gastro.2018.08.022. [29] NILSSON I, LEE SY, SAWYER WS, et al. Metabolic phospholipid labeling of intact bacteria enables a fluorescence assay that detects compromised outer membranes[J]. J Lipid Res, 2020, 61(6): 870-883. DOI: 10.1194/jlr.RA120000654. [30] LEE J, RIDGWAY ND. Substrate channeling in the glycerol-3-phosphate pathway regulates the synthesis, storage and secretion of glycerolipids[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2020, 1865(1): 158438. DOI: 10.1016/j.bbalip.2019.03.010. [31] WANG B, JIANG X, CAO M, et al. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease[J]. Sci Rep, 2016, 6: 32002. DOI: 10.1038/srep32002. [32] CANYELLES M, TONDO M, CEDÓ L, et al. Trimethylamine N-Oxide: A link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function[J]. Int J Mol Sci, 2018, 19(10): 3228. DOI: 10.3390/ijms19103228. [33] CHEN YM, LIU Y, ZHOU RF, et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults[J]. Sci Rep, 2016, 6: 19076. DOI: 10.1038/srep19076. [34] GAO X, XU J, JIANG C, et al. Fish oil ameliorates trimethylamine N-oxide-exacerbated glucose intolerance in high-fat diet-fed mice[J]. Food Funct, 2015, 6(4): 1117-1125. DOI: 10.1039/c5fo00007f. [35] TESCHKE R. Alcoholic liver disease: Alcohol metabolism, cascade of molecular mechanisms, cellular targets, and clinical aspects[J]. Biomedicines, 2018, 6(4): 106. DOI: 10.3390/biomedicines6040106. [36] ZHU L, BAKER SS, GILL C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH[J]. Hepatology, 2013, 57(2): 601-609. DOI: 10.1002/hep.26093. [37] ROBINSON KE, SHAH VH. Pathogenesis and pathways: Nonalcoholic fatty liver disease & alcoholic liver disease[J]. Transl Gastroenterol Hepatol, 2020, 5: 49. DOI: 10.21037/tgh.2019.12.05. [38] SUNG H, KIM SW, HONG M, et al. Microbiota-based treatments in alcoholic liver disease[J]. World J Gastroenterol, 2016, 22(29): 6673-6682. DOI: 10.3748/wjg.v22.i29.6673. [39] FIALHO A, FIALHO A, THOTA P, et al. Small intestinal bacterial overgrowth is associated with non-alcoholic fatty liver disease[J]. J Gastrointestin Liver Dis, 2016, 25(2): 159-165. DOI: 10.15403/jgld.2014.1121.252.iwg. [40] BOHAN R, TIANYU X, TIANTIAN Z, et al. Gut microbiota: A potential manipulator for host adipose tissue and energy metabolism[J]. J Nutr Biochem, 2019, 64: 206-217. DOI: 10.1016/j.jnutbio.2018.10.020. [41] MACIEJEWSKA D, ŁUKOMSKA A, DEC K, et al. Diet-induced rat model of gradual development of non-alcoholic fatty liver disease (NAFLD) with lipopolysaccharides (LPS) secretion[J]. Diagnostics (Basel), 2019, 9(4): 205. DOI: 10.3390/diagnostics9040205. [42] BRANDL K, KUMAR V, ECKMANN L. Gut-liver axis at the frontier of host-microbial interactions[J]. Am J Physiol Gastrointest Liver Physiol, 2017, 312(5): G413-G413, 419. DOI: 10.1152/ajpgi.00361.2016. [43] ROEB E, STEFFEN HM, BANTEL H, et al. S2k Guideline non-alcoholic fatty liver disease[J]. Z Gastroenterol, 2015, 53(7): 668-723. DOI: 10.1055/s-0035-1553193. [44] ABENAVOLI L, MILIC N, PETA V, et al. Alimentary regimen in non-alcoholic fatty liver disease: Mediterranean diet[J]. World J Gastroenterol, 2014, 20(45): 16831-16840. DOI: 10.3748/wjg.v20.i45.16831. [45] KIRK EP, DONNELLY JE, SMITH BK, et al. Minimal resistance training improves daily energy expenditure and fat oxidation[J]. Med Sci Sports Exerc, 2009, 41(5): 1122-1129. DOI: 10.1249/MSS.0b013e318193c64e. [46] FUJIMOTO K, KIMURA Y, ALLEGRETTI JR, et al. Functional restoration of bacteriomes and viromes by fecal microbiota transplantation[J]. Gastroenterology, 2021, 160(6): 2089-2102. e12. DOI: 10.1053/j.gastro.2021.02.013. [47] ZHOU D, PAN Q, SHEN F, et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota[J]. Sci Rep, 2017, 7(1): 1529. DOI: 10.1038/s41598-017-01751-y. [48] FAMOURI F, SHARIAT Z, HASHEMIPOUR M, et al. Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents[J]. J Pediatr Gastroenterol Nutr, 2017, 64(3): 413-417. DOI: 10.1097/MPG.0000000000001422. [49] MANZHALⅡ E, VIRCHENKO O, FALALYEYEVA T, et al. Treatment efficacy of a probiotic preparation for non-alcoholic steatohepatitis: A pilot trial[J]. J Dig Dis, 2017, 18(12): 698-703. DOI: 10.1111/1751-2980.12561. [50] KOBYLIAK N, ABENAVOLI L, FALALYEYEVA T, et al. Beneficial effects of probiotic combination with omega-3 fatty acids in NAFLD: A randomized clinical study[J]. Minerva Med, 2018, 109(6): 418-428. DOI: 10.23736/S0026-4806.18.05845-7.
本文二维码
计量
- 文章访问数: 553
- HTML全文浏览量: 88
- PDF下载量: 55
- 被引次数: 0