Effect of dapagliflozin on metabolic markers and autonomic function in patients with type 2 diabetes mellitus and metabolic associated fatty liver disease
-
摘要:
目的 探讨达格列净对2型糖尿病(T2DM)合并代谢相关脂肪性肝病(MAFLD)患者代谢指标、肝脂肪含量及自主神经功能的影响。 方法 选取2019年10月—2020年10月在郑州大学第二附属医院收治的T2DM合并MAFLD患者90例,随机分为对照组(Con组)和达格列净组(Dap组),各45例。患者入组前均已进行常规治疗,Con组继续给予原有常规降糖方案治疗,Dap组在此基础上加用达格列净,治疗周期为24周。收集两组患者治疗前后一般资料,比较治疗前后BMI、糖化血红蛋白(HbA1c)、空腹血糖(FPG)、血脂、血尿酸(SUA)、胰岛素抵抗指数(HOMA-IR)、肝功能、肝脂肪含量、心率变异性指标的变化。正态分布的计量资料组内比较采用配对t检验,两组间比较采用独立样本t检验; 非正态分布的计量资料组内比较采用Wilcoxon秩和检验,两组间比较采用Mann- Whitney U检验。计数资料两组间比较采用χ2检验。 结果 Dap组和Con组各有43例、40例患者完成研究。治疗24周后,与治疗前相比,Dap组BMI、HbA1c、FPG、TG、SUA、ALT、AST、HOMA-IR、肝脂肪含量降低(t值分别为8.781、8.765、8.813、3.485、6.199、5.694、3.428、6.492、4.925,P值均<0.05),HDL-C、SDNN、SDANN、RMSSD、pNN50、HF、LF升高(t值分别为-2.055、-6.307、-7.696、-3.388、-7.928;Z值分别为-3.339、-3.309,P值均<0.05);Con组HbA1c、FPG、HOMA-IR降低(t值分别为9.220、7.214、3.340,P值均<0.05)。治疗后,Dap组BMI、HbA1c、TG、SUA、HOMA-IR、ALT、AST、肝脂肪含量低于Con组(t值分别为-4.055、-2.670、-2.056、-2.496、-3.976、-3.703、-2.123、-5.184,P值均<0.05),SDNN、SDANN、pNN50、LF、HF高于Con组(t值分别为4.136、5.433、5.971;Z值分别为-2.333、-2.010,P值均<0.05)。 结论 达格列净可以降低T2DM合并MAFLD患者BMI、HbA1c、TG、SUA、肝脂肪含量,改善胰岛素抵抗和肝功能,并且可以降低交感神经活性,具有调节自主神经的功能。 Abstract:Objective To investigate the effect of dapagliflozin on metabolic markers, hepatic fat content, and autonomic nervous function in patients with type 2 diabetes mellitus (T2DM) and metabolic associated fatty liver disease (MAFLD). Methods A total of 90 patients with T2DM and MAFLD who were admitted to The Second Affiliated Hospital of Zhengzhou University from October 2019 to October 2020 were enrolled and randomly divided into control group and dapagliflozin group, with 45 patients in each group. All patients were given conventional treatment before enrollment; the patients in the control group were treated with the original hypoglycemic regimen, and those in the dapagliflozin group were given dapagliflozin in addition to the treatment in the control group. The treatment cycle was 24 weeks. General information was collected before and after treatment, and the two groups were compared in terms of the changes in body mass index (BMI), glycosylated hemoglobin (HbA1c), fasting blood glucose (FPG), blood lipids, serum uric acid (SUA), Homeostasis Model Assessment of Insulin Resistance (HOMA-IR), liver function, liver fat content, and heart rate variability after treatment. The paired t-test was used for comparison of normally distributed continuous data within each group, and the independent samples t-test was used for comparison between groups; the Wilcoxon rank-sum test was used for comparison of non-normally distributed continuous data within each group, and the Mann-Whitney U test was used for comparison between groups. The Chi-square test was used for comparison of categorical data between two groups. Results A total of 43 patients in the dapagliflozin group and 40 patients in the control group completed the study. After 24 weeks of treatment, the dapagliflozin group had significant reductions in BMI, HbA1c, FBG, triglyceride (TG), SUA, alanine aminotransferase (ALT), aspartate aminotransferase (AST), HOMA-IR, and liver fat content (t=8.781, 8.765, 8.813, 3.485, 6.199, 5.694, 3.428, 6.492, and 4.925, all P < 0.05) and significant increases in high-density lipoprotein cholesterol, standard deviation of all normal R-R intervals (SDNN), standard deviation of average NN intervals (SDANN), root mean square of successive differences, percent of the number whose difference between adjacent NN interval are more than 50 ms (pNN50), high frequency (HF), and low frequency (LF) (t=-2.055, -6.307, -7.696, -3.388, and -7.928, Z=-3.339 and -3.309, all P < 0.05), while the control group had significant reductions in HbA1c, FBG, and HOMA-IR (t=9.220, 7.214, and 3.340, all P < 0.05). Compared with the control group after treatment, the dapagliflozin group had significantly lower levels of BMI, HbA1c, TG, SUA, HOMA-IR, ALT, AST, and liver fat content (t=-4.055, -2.670, -2.056, -2.496, -3.976, -3.703, -2.123, and -5.184, all P < 0.05) and significantly higher levels of SDNN, SDANN, pNN50, LF, and HF (t=4.136, 5.433, and 5.971, Z=-2.333 and -2.010, all P < 0.05). Conclusion For patients with T2DM and MAFLD, dapagliflozin can reduce BMI, HbA1c, TG, SUA, and liver fat content, improve insulin resistance and liver function, reduce the activity of sympathetic nerve, and regulate autonomic nerve function. -
表 1 两组患者一般资料比较
指标 Con组(n=40) Dap组(n=43) 统计值 P值 男/女(例) 18/22 19/24 χ2=0.006 0.941 年龄(岁) 60.5±6.6 59.0±10.1 t=-0.790 0.432 病程(年) 10.4±3.3 10.8±4.1 t=0.585 0.560 收缩压(mmHg) 133.4±5.1 131.4±5.9 t=-1.587 0.116 舒张压(mmHg) 82.0±8.7 79.5±9.1 t=-1.273 0.207 表 2 两组治疗前后代谢指标及肝脂肪含量变化
指标 Con组(n=40) Dap组(n=43) t值 P值 BMI(kg/m2) 治疗前 26.8±1.6 26.3±1.5 -1.312 0.193 治疗后 26.6±1.4 25.3±1.5 -4.055 <0.001 HbA1c(%) 治疗前 8.1±0.7 8.0±0.9 -0.695 0.489 治疗后 7.4±0.8 6.9±0.9 -2.670 0.009 FPG(mmol/L) 治疗前 8.6±2.0 8.6±1.5 0.062 0.951 治疗后 7.1±1.2 6.9±0.9 -0.868 0.388 TC(mmol/L) 治疗前 5.0±0.7 5.0±0.8 -0.050 0.960 治疗后 4.9±0.6 4.9±1.0 0.353 0.725 TG(mmol/L) 治疗前 2.0±0.5 2.1±0.6 0.682 0.497 治疗后 1.9±0.5 1.7±0.6 -2.056 0.043 HDL-C(mmol/L) 治疗前 1.2±0.3 1.2±0.3 0.371 0.712 治疗后 1.3±0.3 1.4±0.2 1.906 0.062 LDL-C(mmol/L) 治疗前 2.3±0.7 2.3±0.5 -0.232 0.817 治疗后 2.3±0.8 2.2±0.3 -0.505 0.616 ALT(U/L) 治疗前 44.3±7.0 44.6±7.7 0.172 0.864 治疗后 42.6±4.4 38.7±5.3 -3.703 <0.001 AST(U/L) 治疗前 36.4±6.2 36.4±5.4 -0.002 0.998 治疗后 35.5±5.9 33.6±5.1 -2.123 0.037 SUA(mg/g) 治疗前 356.7±87.8 351.5±87.0 -0.270 0.788 治疗后 340.7±74.5 302.4±65.3 -2.496 0.015 HOMA-IR 治疗前 5.2±1.5 5.5±1.4 0.898 0.372 治疗后 4.5±0.9 3.5±1.3 -3.976 <0.001 肝脂肪含量(%) 治疗前 16.2±1.5 15.8±1.8 -0.974 0.333 治疗后 16.0±1.4 14.1±1.8 -5.184 <0.001 表 3 两组治疗前后HRV相关指标变化
指标 Con组(n=40) Dap组(n=43) 统计值 P值 SDNN(ms) 治疗前 96.3±26.6 95.7±25.3 t=-0.106 0.916 治疗后 99.0±21.7 122.1±28.8 t=4.136 <0.001 SDANN(ms) 治疗前 88.5±25.1 88.3±24.0 t=-0.032 0.974 治疗后 90.0±23.3 117.8±23.3 t=5.433 <0.001 RMSSD(ms) 治疗前 19.0±5.6 18.7±5.6 t=-0.226 0.822 治疗后 20.4±4.6 22.8±7.7 t=1.807 0.075 pNN50(%) 治疗前 3.9±2.2 3.3±2.0 t=-1.241 0.218 治疗后 4.3±2.5 11.1±6.9 t=5.971 <0.001 LF(ms2) 治疗前 717.0(663.4~799.8) 738.5(639.8~800.1) Z=-0.246 0.806 治疗后 723.8(637.8~799.7) 812.4(698.5~987.5) Z=-2.333 0.020 HF(ms2) 治疗前 457.8(331.4~690.9) 389.2(292.4~634.0) Z=-0.861 0.389 治疗后 504.5(401.2~595.6) 583.7(453.2~734.9) Z=-2.010 0.044 -
[1] PORTILLO-SANCHEZ P, BRIL F, MAXIMOS M, et al. High prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus and normal plasma aminotransferase levels[J]. J Clin Endocrinol Metab, 2015, 100(6): 2231-2238. DOI: 10.1210/jc.2015-1966. [2] SANYAL AJ. NASH: A global health problem[J]. Hepatol Res, 2011, 41(7): 670-674. DOI: 10.1111/j.1872-034X.2011.00824.x. [3] World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications. Report of a WHO consultation, part 1: Diagnosis and classification of diabetes mellitus[R]. Geneva: WH0, 1999. [4] ESLAM M, NEWSOME PN, SARIN SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement[J]. J Hepatol, 2020, 73(1): 202-209. DOI: 10.1016/j.jhep.2020.03.039. [5] JI L, MA J, LI H, et al. Dapagliflozin as monotherapy in drug-naive Asian patients with type 2 diabetes mellitus: A randomized, blinded, prospective phase Ⅲ study[J]. Clin Ther, 2014, 36(1): 84-100. e9. DOI: 10.1016/j.clinthera.2013.11.002. [6] BUGIANESI E, GASTALDELLI A, VANNI E, et al. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: Sites and mechanisms[J]. Diabetologia, 2005, 48(4): 634-642. DOI: 10.1007/s00125-005-1682-x. [7] YANG C, YANG S, XU W, et al. Association between the hyperuricemia and nonalcoholic fatty liver disease risk in a Chinese population: A retrospective cohort study[J]. PLoS One, 2017, 12(5): e0177249. DOI: 10.1371/journal.pone.0177249. [8] YI M, CHEN RP, YANG R, et al. Increased prevalence and risk of non-alcoholic fatty liver disease in overweight and obese patients with Type 2 diabetes in South China[J]. Diabet Med, 2017, 34(4): 505-513. DOI: 10.1111/dme.13174. [9] CALAPKULU M, CANDER S, GUL OO, et al. Lipid profile in type 2 diabetic patients with new dapagliflozin treatment; actual clinical experience data of six months retrospective lipid profile from single center[J]. Diabetes Metab Syndr, 2019, 13(2): 1031-1034. DOI: 10.1016/j.dsx.2019.01.016. [10] BASU D, HUGGINS LA, SCERBO D, et al. Mechanism of increased LDL (Low-Density Lipoprotein) and decreased triglycerides with SGLT2 (Sodium-Glucose Cotransporter 2) inhibition[J]. Arterioscler Thromb Vasc Biol, 2018, 38(9): 2207-2216. DOI: 10.1161/ATVBAHA.118.311339. [11] BAYS HE, SARTIPY P, XU J, et al. Dapagliflozin in patients with type Ⅱ diabetes mellitus, with and without elevated triglyceride and reduced high-density lipoprotein cholesterol levels[J]. J Clin Lipidol, 2017, 11(2): 450-458. e1. DOI: 10.1016/j.jacl.2017.01.018. [12] NOVIKOV A, FU Y, HUANG W, et al. SGLT2 inhibition and renal urate excretion: Role of luminal glucose, GLUT9, and URAT1[J]. Am J Physiol Renal Physiol, 2019, 316(1): f173-f185. DOI: 10.1152/ajprenal.00462.2018. [13] MANTOVANI A, PETRACCA G, CSERMELY A, et al. Sodium-Glucose Cotransporter-2 inhibitors for treatment of nonalcoholic fatty liver disease: A meta-analysis of randomized controlled trials[J]. Metabolites, 2020, 11(1): 22. DOI: 10.3390/metabo11010022. [14] COELHO F, BORGES-CANHA M, von HAFE M, et al. Effects of sodium-glucose co-transporter 2 inhibitors on liver parameters and steatosis: A meta-analysis of randomized clinical trials[J]. Diabetes Metab Res Rev, 2021, 37(6): e3413. DOI: 10.1002/dmrr.3413. [15] HAYASHIZAKI-SOMEYA Y, KUROSAKI E, TAKASU T, et al. Ipragliflozin, an SGLT2 inhibitor, exhibits a prophylactic effect on hepatic steatosis and fibrosis induced by choline-deficient l-amino acid-defined diet in rats[J]. Eur J Pharmacol, 2015, 754: 19-24. DOI: 10.1016/j.ejphar.2015.02.009. [16] SONG T, CHEN S, ZHAO H, et al. Meta-analysis of the effect of sodium-glucose cotransporter 2 inhibitors on hepatic fibrosis in patients with type 2 diabetes mellitus complicated with non-alcoholic fatty liver disease[J]. Hepatol Res, 2021, 51(6): 641-651. DOI: 10.1111/hepr.13645. [17] RAHMAN A, FUJISAWA Y, NAKANO D, et al. Effect of a selective SGLT2 inhibitor, luseogliflozin, on circadian rhythm of sympathetic nervous function and locomotor activities in metabolic syndrome rats[J]. Clin Exp Pharmacol Physiol, 2017, 44(4): 522-525. DOI: 10.1111/1440-1681.12725. [18] MATTHEWS VB, ELLIOT RH, RUDNICKA C, et al. Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2[J]. J Hypertens, 2017, 35(10): 2059-2068. DOI: 10.1097/HJH.0000000000001434. [19] HOUGHTON D, ZALEWSKI P, HALLSWORTH K, et al. The degree of hepatic steatosis associates with impaired cardiac and autonomic function[J]. J Hepatol, 2019, 70(6): 1203-1213. DOI: 10.1016/j.jhep.2019.01.035. [20] LICHT CM, VREEBURG SA, van REEDT DORTLAND AK, et al. Increased sympathetic and decreased parasympathetic activity rather than changes in hypothalamic-pituitary-adrenal axis activity is associated with metabolic abnormalities[J]. J Clin Endocrinol Metab, 2010, 95(5): 2458-2466. DOI: 10.1210/jc.2009-2801.
计量
- 文章访问数: 830
- HTML全文浏览量: 367
- PDF下载量: 78
- 被引次数: 0