中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

达格列净对2型糖尿病合并代谢相关脂肪性肝病患者代谢指标及自主神经功能的影响

张真真 张耀颐 王凯 田晨光

引用本文:
Citation:

达格列净对2型糖尿病合并代谢相关脂肪性肝病患者代谢指标及自主神经功能的影响

DOI: 10.3969/j.issn.1001-5256.2021.12.023
基金项目: 

河南省科技厅科技攻关项目 (182102310596)

详细信息
    通信作者:

    田晨光,tcg90123@163.com

  • 中图分类号: R575.5

Effect of dapagliflozin on metabolic markers and autonomic function in patients with type 2 diabetes mellitus and metabolic associated fatty liver disease

Research funding: 

Science and Technique Foundation of He'nan (182102310596)

  • 摘要:   目的  探讨达格列净对2型糖尿病(T2DM)合并代谢相关脂肪性肝病(MAFLD)患者代谢指标、肝脂肪含量及自主神经功能的影响。  方法  选取2019年10月—2020年10月在郑州大学第二附属医院收治的T2DM合并MAFLD患者90例,随机分为对照组(Con组)和达格列净组(Dap组),各45例。患者入组前均已进行常规治疗,Con组继续给予原有常规降糖方案治疗,Dap组在此基础上加用达格列净,治疗周期为24周。收集两组患者治疗前后一般资料,比较治疗前后BMI、糖化血红蛋白(HbA1c)、空腹血糖(FPG)、血脂、血尿酸(SUA)、胰岛素抵抗指数(HOMA-IR)、肝功能、肝脂肪含量、心率变异性指标的变化。正态分布的计量资料组内比较采用配对t检验,两组间比较采用独立样本t检验; 非正态分布的计量资料组内比较采用Wilcoxon秩和检验,两组间比较采用Mann- Whitney U检验。计数资料两组间比较采用χ2检验。  结果  Dap组和Con组各有43例、40例患者完成研究。治疗24周后,与治疗前相比,Dap组BMI、HbA1c、FPG、TG、SUA、ALT、AST、HOMA-IR、肝脂肪含量降低(t值分别为8.781、8.765、8.813、3.485、6.199、5.694、3.428、6.492、4.925,P值均<0.05),HDL-C、SDNN、SDANN、RMSSD、pNN50、HF、LF升高(t值分别为-2.055、-6.307、-7.696、-3.388、-7.928;Z值分别为-3.339、-3.309,P值均<0.05);Con组HbA1c、FPG、HOMA-IR降低(t值分别为9.220、7.214、3.340,P值均<0.05)。治疗后,Dap组BMI、HbA1c、TG、SUA、HOMA-IR、ALT、AST、肝脂肪含量低于Con组(t值分别为-4.055、-2.670、-2.056、-2.496、-3.976、-3.703、-2.123、-5.184,P值均<0.05),SDNN、SDANN、pNN50、LF、HF高于Con组(t值分别为4.136、5.433、5.971;Z值分别为-2.333、-2.010,P值均<0.05)。  结论  达格列净可以降低T2DM合并MAFLD患者BMI、HbA1c、TG、SUA、肝脂肪含量,改善胰岛素抵抗和肝功能,并且可以降低交感神经活性,具有调节自主神经的功能。

     

  • 表  1  两组患者一般资料比较

    指标 Con组(n=40) Dap组(n=43) 统计值 P
    男/女(例) 18/22 19/24 χ2=0.006 0.941
    年龄(岁) 60.5±6.6 59.0±10.1 t=-0.790 0.432
    病程(年) 10.4±3.3 10.8±4.1 t=0.585 0.560
    收缩压(mmHg) 133.4±5.1 131.4±5.9 t=-1.587 0.116
    舒张压(mmHg) 82.0±8.7 79.5±9.1 t=-1.273 0.207
    下载: 导出CSV

    表  2  两组治疗前后代谢指标及肝脂肪含量变化

    指标 Con组(n=40) Dap组(n=43) t P
    BMI(kg/m2)
      治疗前 26.8±1.6 26.3±1.5 -1.312 0.193
      治疗后 26.6±1.4 25.3±1.5 -4.055 <0.001
    HbA1c(%)
      治疗前 8.1±0.7 8.0±0.9 -0.695 0.489
      治疗后 7.4±0.8 6.9±0.9 -2.670 0.009
    FPG(mmol/L)
      治疗前 8.6±2.0 8.6±1.5 0.062 0.951
      治疗后 7.1±1.2 6.9±0.9 -0.868 0.388
    TC(mmol/L)
      治疗前 5.0±0.7 5.0±0.8 -0.050 0.960
      治疗后 4.9±0.6 4.9±1.0 0.353 0.725
    TG(mmol/L)
      治疗前 2.0±0.5 2.1±0.6 0.682 0.497
      治疗后 1.9±0.5 1.7±0.6 -2.056 0.043
    HDL-C(mmol/L)
      治疗前 1.2±0.3 1.2±0.3 0.371 0.712
      治疗后 1.3±0.3 1.4±0.2 1.906 0.062
    LDL-C(mmol/L)
      治疗前 2.3±0.7 2.3±0.5 -0.232 0.817
      治疗后 2.3±0.8 2.2±0.3 -0.505 0.616
    ALT(U/L)
      治疗前 44.3±7.0 44.6±7.7 0.172 0.864
      治疗后 42.6±4.4 38.7±5.3 -3.703 <0.001
    AST(U/L)
      治疗前 36.4±6.2 36.4±5.4 -0.002 0.998
      治疗后 35.5±5.9 33.6±5.1 -2.123 0.037
    SUA(mg/g)
      治疗前 356.7±87.8 351.5±87.0 -0.270 0.788
      治疗后 340.7±74.5 302.4±65.3 -2.496 0.015
    HOMA-IR
      治疗前 5.2±1.5 5.5±1.4 0.898 0.372
      治疗后 4.5±0.9 3.5±1.3 -3.976 <0.001
    肝脂肪含量(%)
      治疗前 16.2±1.5 15.8±1.8 -0.974 0.333
      治疗后 16.0±1.4 14.1±1.8 -5.184 <0.001
    下载: 导出CSV

    表  3  两组治疗前后HRV相关指标变化

    指标 Con组(n=40) Dap组(n=43) 统计值 P
    SDNN(ms)
      治疗前 96.3±26.6 95.7±25.3 t=-0.106 0.916
      治疗后 99.0±21.7 122.1±28.8 t=4.136 <0.001
    SDANN(ms)
      治疗前 88.5±25.1 88.3±24.0 t=-0.032 0.974
      治疗后 90.0±23.3 117.8±23.3 t=5.433 <0.001
    RMSSD(ms)
      治疗前 19.0±5.6 18.7±5.6 t=-0.226 0.822
      治疗后 20.4±4.6 22.8±7.7 t=1.807 0.075
    pNN50(%)
      治疗前 3.9±2.2 3.3±2.0 t=-1.241 0.218
      治疗后 4.3±2.5 11.1±6.9 t=5.971 <0.001
    LF(ms2)
      治疗前 717.0(663.4~799.8) 738.5(639.8~800.1) Z=-0.246 0.806
      治疗后 723.8(637.8~799.7) 812.4(698.5~987.5) Z=-2.333 0.020
    HF(ms2)
      治疗前 457.8(331.4~690.9) 389.2(292.4~634.0) Z=-0.861 0.389
      治疗后 504.5(401.2~595.6) 583.7(453.2~734.9) Z=-2.010 0.044
    下载: 导出CSV
  • [1] PORTILLO-SANCHEZ P, BRIL F, MAXIMOS M, et al. High prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus and normal plasma aminotransferase levels[J]. J Clin Endocrinol Metab, 2015, 100(6): 2231-2238. DOI: 10.1210/jc.2015-1966.
    [2] SANYAL AJ. NASH: A global health problem[J]. Hepatol Res, 2011, 41(7): 670-674. DOI: 10.1111/j.1872-034X.2011.00824.x.
    [3] World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications. Report of a WHO consultation, part 1: Diagnosis and classification of diabetes mellitus[R]. Geneva: WH0, 1999.
    [4] ESLAM M, NEWSOME PN, SARIN SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement[J]. J Hepatol, 2020, 73(1): 202-209. DOI: 10.1016/j.jhep.2020.03.039.
    [5] JI L, MA J, LI H, et al. Dapagliflozin as monotherapy in drug-naive Asian patients with type 2 diabetes mellitus: A randomized, blinded, prospective phase Ⅲ study[J]. Clin Ther, 2014, 36(1): 84-100. e9. DOI: 10.1016/j.clinthera.2013.11.002.
    [6] BUGIANESI E, GASTALDELLI A, VANNI E, et al. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: Sites and mechanisms[J]. Diabetologia, 2005, 48(4): 634-642. DOI: 10.1007/s00125-005-1682-x.
    [7] YANG C, YANG S, XU W, et al. Association between the hyperuricemia and nonalcoholic fatty liver disease risk in a Chinese population: A retrospective cohort study[J]. PLoS One, 2017, 12(5): e0177249. DOI: 10.1371/journal.pone.0177249.
    [8] YI M, CHEN RP, YANG R, et al. Increased prevalence and risk of non-alcoholic fatty liver disease in overweight and obese patients with Type 2 diabetes in South China[J]. Diabet Med, 2017, 34(4): 505-513. DOI: 10.1111/dme.13174.
    [9] CALAPKULU M, CANDER S, GUL OO, et al. Lipid profile in type 2 diabetic patients with new dapagliflozin treatment; actual clinical experience data of six months retrospective lipid profile from single center[J]. Diabetes Metab Syndr, 2019, 13(2): 1031-1034. DOI: 10.1016/j.dsx.2019.01.016.
    [10] BASU D, HUGGINS LA, SCERBO D, et al. Mechanism of increased LDL (Low-Density Lipoprotein) and decreased triglycerides with SGLT2 (Sodium-Glucose Cotransporter 2) inhibition[J]. Arterioscler Thromb Vasc Biol, 2018, 38(9): 2207-2216. DOI: 10.1161/ATVBAHA.118.311339.
    [11] BAYS HE, SARTIPY P, XU J, et al. Dapagliflozin in patients with type Ⅱ diabetes mellitus, with and without elevated triglyceride and reduced high-density lipoprotein cholesterol levels[J]. J Clin Lipidol, 2017, 11(2): 450-458. e1. DOI: 10.1016/j.jacl.2017.01.018.
    [12] NOVIKOV A, FU Y, HUANG W, et al. SGLT2 inhibition and renal urate excretion: Role of luminal glucose, GLUT9, and URAT1[J]. Am J Physiol Renal Physiol, 2019, 316(1): f173-f185. DOI: 10.1152/ajprenal.00462.2018.
    [13] MANTOVANI A, PETRACCA G, CSERMELY A, et al. Sodium-Glucose Cotransporter-2 inhibitors for treatment of nonalcoholic fatty liver disease: A meta-analysis of randomized controlled trials[J]. Metabolites, 2020, 11(1): 22. DOI: 10.3390/metabo11010022.
    [14] COELHO F, BORGES-CANHA M, von HAFE M, et al. Effects of sodium-glucose co-transporter 2 inhibitors on liver parameters and steatosis: A meta-analysis of randomized clinical trials[J]. Diabetes Metab Res Rev, 2021, 37(6): e3413. DOI: 10.1002/dmrr.3413.
    [15] HAYASHIZAKI-SOMEYA Y, KUROSAKI E, TAKASU T, et al. Ipragliflozin, an SGLT2 inhibitor, exhibits a prophylactic effect on hepatic steatosis and fibrosis induced by choline-deficient l-amino acid-defined diet in rats[J]. Eur J Pharmacol, 2015, 754: 19-24. DOI: 10.1016/j.ejphar.2015.02.009.
    [16] SONG T, CHEN S, ZHAO H, et al. Meta-analysis of the effect of sodium-glucose cotransporter 2 inhibitors on hepatic fibrosis in patients with type 2 diabetes mellitus complicated with non-alcoholic fatty liver disease[J]. Hepatol Res, 2021, 51(6): 641-651. DOI: 10.1111/hepr.13645.
    [17] RAHMAN A, FUJISAWA Y, NAKANO D, et al. Effect of a selective SGLT2 inhibitor, luseogliflozin, on circadian rhythm of sympathetic nervous function and locomotor activities in metabolic syndrome rats[J]. Clin Exp Pharmacol Physiol, 2017, 44(4): 522-525. DOI: 10.1111/1440-1681.12725.
    [18] MATTHEWS VB, ELLIOT RH, RUDNICKA C, et al. Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2[J]. J Hypertens, 2017, 35(10): 2059-2068. DOI: 10.1097/HJH.0000000000001434.
    [19] HOUGHTON D, ZALEWSKI P, HALLSWORTH K, et al. The degree of hepatic steatosis associates with impaired cardiac and autonomic function[J]. J Hepatol, 2019, 70(6): 1203-1213. DOI: 10.1016/j.jhep.2019.01.035.
    [20] LICHT CM, VREEBURG SA, van REEDT DORTLAND AK, et al. Increased sympathetic and decreased parasympathetic activity rather than changes in hypothalamic-pituitary-adrenal axis activity is associated with metabolic abnormalities[J]. J Clin Endocrinol Metab, 2010, 95(5): 2458-2466. DOI: 10.1210/jc.2009-2801.
  • 加载中
表(3)
计量
  • 文章访问数:  830
  • HTML全文浏览量:  367
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 录用日期:  2021-06-25
  • 出版日期:  2021-12-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回