中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外泌体在肝纤维化发生发展及诊治中的作用

罗业浩 陈秋霞 吕挺 区佩琪 曹知勇 段雪琳

引用本文:
Citation:

外泌体在肝纤维化发生发展及诊治中的作用

DOI: 10.3969/j.issn.1001-5256.2021.12.038
基金项目: 

校级一流学科建设开放课题项目 (2019XK040)

详细信息
    通信作者:

    段雪琳,duanxuelin@126.com

  • 中图分类号: R575.2

Role of exosomes in the development, progression, diagnosis, and treatment of liver fibrosis

Research funding: 

University-Level First-Class Discipline Construction Open Subject Project (2019XK040)

  • 摘要: 越来越多研究证实外泌体与肝纤维化的关系十分密切,外泌体参与细胞因子分泌、巨噬细胞活化、细胞外基质重塑及肝星状细胞活化从而介导肝纤维化的进程。总结了肝纤维化的逆转通过减少外泌体参与的促炎和纤维化细胞因子,减少细胞外基质蛋白的产生,增加胶原酶的活性,最后导致活化的肌成纤维细胞消失。认为外泌体在治疗肝纤维化中具有重要价值,是潜在的诊断和治疗的标志物,在日后的研究中,可以提高外泌体的提取技术及治疗定量的标准化制定。

     

  • 图  1  外泌体的形成过程

    注:外泌体的形成首先经过细胞内吞产生早期核内体,经过膜结合信号蛋白及胞浆蛋白使囊膜内陷,再突入变成胞内多泡体,胞内多泡体与溶酶体及质膜融合,最后将小囊泡排出细胞外形成外泌体。

    图  2  外泌体对肝纤维化的影响机制

    注:富含PDGF、CCN2、TGFβ、CTGF等因子的外泌体促进HSC活化,进一步导致肌成纤维细胞的形成;HSC释放富含外泌体的Twist1和miR214/199-5a簇,以及炎症因子TNFα、IL-1α、IL-β、IL-22和IL-6以使HSC失活;富含MT1-MMP、乙酰肝素酶、整合素、DDR和LOXL2的外泌体参与ECM重塑;富含PDGF、TRAIL、TGFβ1、CD40L等促纤维化介质促进巨噬细胞的活化;外泌体所含的抑制性因子TGFβ、IL-10、甘露糖受体参与巨噬细胞灭活从而诱导肌成纤维细胞凋亡。

  • [1] DHAR D, BAGLIERI J, KISSELEVA T, et al. Mechanisms of liver fibrosis and its role in liver cancer[J]. Exp Biol Med (Maywood), 2020, 245(2): 96-108. DOI: 10.1177/1535370219898141.
    [2] PAROLA M, PINZANI M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues[J]. Mol Aspects Med, 2019, 65: 37-55. DOI: 10.1016/j.mam.2018.09.002.
    [3] ŠMÍD V. Liver fibrosis[J]. Vnitr Lek, 2020, 66(4): 61-66.
    [4] ALZHRANI GN, ALANAZI ST, ALSHARIF SY, et al. Exosomes: Isolation, characterization, and biomedical applications[J]. Cell Biol Int, 2021, 45(9): 1807-1831. DOI: 10.1002/cbin.11620.
    [5] ALSHEHRI B. Plant-derived xenomiRs and cancer: Cross-kingdom gene regulation[J]. Saudi J Biol Sci, 2021, 28(4): 2408-2422. DOI: 10.1016/j.sjbs.2021.01.039.
    [6] LIU MY, FU L, ZHANG WH, et al. Progress in mechanism of interaction between immune cells and exosomes[J]. Chin J Immunol, 2019, 35(22): 2806-2812. DOI: 10.3969/j.issn.1000-484X.2019.22.024.

    刘满宇, 付璐, 张文慧, 等. 免疫细胞与外泌体相互作用机制的研究进展[J]. 中国免疫学杂志, 2019, 35(22): 2806-2812. DOI: 10.3969/j.issn.1000-484X.2019.22.024.
    [7] DEWIDAR B, MEYER C, DOOLEY S, et al. TGF-β in hepatic stellate cell activation and liver fibrogenesis-updated 2019[J]. Cells, 2019, 8(11): 1419. DOI: 10.3390/cells8111419.
    [8] WEISKIRCHEN R, WEISKIRCHEN S, TACKE F. Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications[J]. Mol Aspects Med, 2019, 65: 2-15. DOI: 10.1016/j.mam.2018.06.003.
    [9] FUENTES-CALVO I, MARTINEZ-SALGADO C. Sos1 modulates extracellular matrix synthesis, proliferation, and migration in fibroblasts[J]. Front Physiol, 2021, 12: 645044. DOI: 10.3389/fphys.2021.645044.
    [10] KIM J, KANG W, KANG SH, et al. Proline-rich tyrosine kinase 2 mediates transforming growth factor-beta-induced hepatic stellate cell activation and liver fibrosis[J]. Sci Rep, 2020, 10(1): 21018. DOI: 10.1038/s41598-020-78056-0.
    [11] CHEN PJ, KUO LM, WU YH, et al. BAY 41-2272 attenuates CTGF expression via sGC/cGMP-independent pathway in TGFβ1-activated hepatic stellate cells[J]. Biomedicines, 2020, 8(9): 330. DOI: 10.3390/biomedicines8090330.
    [12] SHAO J, LI S, LIU Y, et al. Extracellular vesicles participate in macrophage-involved immune responses under liver diseases[J]. Life Sci, 2020, 240: 117094. DOI: 10.1016/j.lfs.2019.117094.
    [13] SHEN M, SHEN Y, FAN X, et al. Roles of macrophages and exosomes in liver diseases[J]. Front Med (Lausanne), 2020, 7: 583691. DOI: 10.3389/fmed.2020.583691.
    [14] AN SY, PETRESCU AD, DEMORROW S. Targeting certain interleukins as novel treatment options for liver fibrosis[J]. Front Pharmacol, 2021, 12: 645703. DOI: 10.3389/fphar.2021.645703.
    [15] DEGROOTE H, LEFERE S, VANDIERENDONCK A, et al. Characterization of the inflammatory microenvironment and hepatic macrophage subsets in experimental hepatocellular carcinoma models[J]. Oncotarget, 2021, 12(6): 562-577. DOI: 10.18632/oncotarget.27906.
    [16] ROEHLEN N, CROUCHET E, BAUMERT TF. Liver fibrosis: Mechanistic concepts and therapeutic perspectives[J]. Cells, 2020, 9(4): 875. DOI: 10.3390/cells9040875.
    [17] PINHEIRO D, DIAS I, RIBEIRO SILVA K, et al. Mechanisms underlying cell therapy in liver fibrosis: An overview[J]. Cells, 2019, 8(11): 1339. DOI: 10.3390/cells8111339.
    [18] WANG JP, LI TZ, HUANG XY, et al. Synthesis and anti-fibrotic effects of santamarin derivatives as cytotoxic agents against hepatic stellate cell line LX2[J]. Bioorg Med Chem Lett, 2021, 41: 127994. DOI: 10.1016/j.bmcl.2021.127994.
    [19] SHU Y, LIU X, HUANG H, et al. Research progress of natural compounds in anti-liver fibrosis by affecting autophagy of hepatic stellate cells[J]. Mol Biol Rep, 2021, 48(2): 1915-1924. DOI: 10.1007/s11033-021-06171-w.
    [20] HOFFMANN C, DJERIR N, DANCKAERT A, et al. Hepatic stellate cell hypertrophy is associated with metabolic liver fibrosis[J]. Sci Rep, 2020, 10(1): 3850. DOI: 10.1038/s41598-020-60615-0.
    [21] KHOMICH O, IVANOV AV, BARTOSCH B. Metabolic hallmarks of hepatic stellate cells in liver fibrosis[J]. Cells, 2019, 9(1): 24. DOI: 10.3390/cells9010024.
    [22] CHEN Z, JAIN A, LIU H, et al. Targeted drug delivery to hepatic stellate cells for the treatment of liver fibrosis[J]. J Pharmacol Exp Ther, 2019, 370(3): 695-702. DOI: 10.1124/jpet.118.256156.
    [23] WANG X, SEO W, PARK SH, et al. MicroRNA-223 restricts liver fibrosis by inhibiting the TAZ-IHH-GLI2 and PDGF signaling pathways via the crosstalk of multiple liver cell types[J]. Int J Biol Sci, 2021, 17(4): 1153-1167. DOI: 10.7150/ijbs.58365.
    [24] HAN Z, MA Y, CAO G, et al. Integrin αVβ1 regulates procollagen I production through a non-canonical transforming growth factor β signaling pathway in human hepatic stellate cells[J]. Biochem J, 2021, 478(9): 1689-1703. DOI: 10.1042/BCJ20200749.
    [25] ZENOVIA S, STANCIU C, SFARTI C, et al. Vibration-controlled transient elastography and controlled attenuation parameter for the diagnosis of liver steatosis and fibrosis in patients with nonalcoholic fatty liver disease[J]. Diagnostics (Basel), 2021, 11(5): 787. DOI: 10.3390/diagnostics11050787.
    [26] FLAMINI S, SERGEEV P, VIANA DE BARROS Z, et al. Glucocorticoid-induced leucine zipper regulates liver fibrosis by suppressing CCL2-mediated leukocyte recruitment[J]. Cell Death Dis, 2021, 12(5): 421. DOI: 10.1038/s41419-021-03704-w.
    [27] LIN CY, ADHIKARY P, CHENG K. Cellular protein markers, therapeutics, and drug delivery strategies in the treatment of diabetes-associated liver fibrosis[J]. Adv Drug Deliv Rev, 2021, 174: 127-139. DOI: 10.1016/j.addr.2021.04.008.
    [28] GANTUMUR D, HARIMOTO N, MURANUSHI R, et al. Hepatic stellate cell as a Mac-2-binding protein-producing cell in patients with liver fibrosis[J]. Hepatol Res, 2021. DOI: 10.1111/hepr.13648.[Online ahead of print]
    [29] ZHAO Z, LIN CY, CHENG K. siRNA- and miRNA-based therapeutics for liver fibrosis[J]. Transl Res, 2019, 214: 17-29. DOI: 10.1016/j.trsl.2019.07.007.
    [30] YIN F, WANG WY, JIANG WH. Human umbilical cord mesenchymal stem cells ameliorate liver fibrosis in vitro and in vivo: From biological characteristics to therapeutic mechanisms[J]. World J Stem Cells, 2019, 11(8): 548-564. DOI: 10.4252/wjsc.v11.i8.548.
    [31] LUCANTONI F, MARTÍNEZ-CEREZUELA A, GRUEVSKA A, et al. Understanding the implication of autophagy in the activation of hepatic stellate cells in liver fibrosis: Are we there yet?[J]. J Pathol, 2021, 254(3): 216-228. DOI: 10.1002/path.5678.
    [32] SUN XH, ZHANG H, FAN XP, et al. Astilbin protects against carbon tetrachloride-induced liver fibrosis in rats[J]. Pharmacology, 2021, 106(5-6): 323-331. DOI: 10.1159/000514594.
    [33] WANG L, WANG Y, QUAN J. Exosomes derived from natural killer cells inhibit hepatic stellate cell activation and liver fibrosis[J]. Hum Cell, 2020, 33(3): 582-589. DOI: 10.1007/s13577-020-00371-5.
    [34] GAO J, WEI B, de ASSUNCAO TM, et al. Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis[J]. J Hepatol, 2020, 73(5): 1144-1154. DOI: 10.1016/j.jhep.2020.04.044.
    [35] ZHANG XW, ZHOU JC, PENG D, et al. Disrupting the TRIB3-SQSTM1 interaction reduces liver fibrosis by restoring autophagy and suppressing exosome-mediated HSC activation[J]. Autophagy, 2020, 16(5): 782-796. DOI: 10.1080/15548627.2019.1635383.
    [36] HODGE A, ANDREWARTHA N, LOURENSZ D, et al. Human amnion epithelial cells produce soluble factors that enhance liver repair by reducing fibrosis while maintaining regeneration in a model of chronic liver injury[J]. Cell Transplant, 2020, 29: 963689720950221. DOI: 10.1177/0963689720950221.
    [37] ALATAS FS, MATSUURA T, PUDJIADI AH, et al. Peroxisome proliferator-activated receptor gamma agonist attenuates liver fibrosis by several fibrogenic pathways in an animal model of cholestatic fibrosis[J]. Pediatr Gastroenterol Hepatol Nutr, 2020, 23(4): 346-355. DOI: 10.5223/pghn.2020.23.4.346.
    [38] YANG X, MA L, WEI R, et al. Twist1-induced miR-199a-3p promotes liver fibrosis by suppressing caveolin-2 and activating TGF-β pathway[J]. Signal Transduct Target Ther, 2020, 5(1): 75. DOI: 10.1038/s41392-020-0169-z.
    [39] KISSELEVA T, BRENNER D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(3): 151-166. DOI: 10.1038/s41575-020-00372-7.
    [40] RONG X, LIU J, YAO X, et al. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway[J]. Stem Cell Res Ther, 2019, 10(1): 98. DOI: 10.1186/s13287-019-1204-2.
    [41] WATANABE Y, TSUCHIYA A, SEINO S, et al. Mesenchymal stem cells and induced bone marrow-derived macrophages synergistically improve liver fibrosis in mice[J]. Stem Cells Transl Med, 2019, 8(3): 271-284. DOI: 10.1002/sctm.18-0105.
    [42] CHEN L, CHEN R, KEMPER S, et al. Therapeutic effects of serum extracellular vesicles in liver fibrosis[J]. J Extracell Vesicles, 2018, 7(1): 1461505. DOI: 10.1080/20013078.2018.1461505.
    [43] JIAO Y, XU P, SHI H, et al. Advances on liver cell-derived exosomes in liver diseases[J]. J Cell Mol Med, 2021, 25(1): 15-26. DOI: 10.1111/jcmm.16123.
    [44] CIFERRI MC, QUARTO R, TASSO R. Extracellular vesicles as biomarkers and therapeutic tools: From pre-clinical to clinical applications[J]. Biology (Basel), 2021, 10(5): 359. DOI: 10.3390/biology10050359.
    [45] EUDY BJ, MCDERMOTT CE, LIU X, et al. Targeted and untargeted metabolomics provide insight into the consequences of glycine-N-methyltransferase deficiency including the novel finding of defective immune function[J]. Physiol Rep, 2020, 8(18): e14576. DOI: 10.14814/phy2.14576.
    [46] ZHANG Q, ZHANG Q, LI B, et al. The diagnosis value of a novel model with 5 circulating miRNAs for liver fibrosis in patients with chronic hepatitis B[J]. Mediators Inflamm, 2021, 2021: 6636947. DOI: 10.1155/2021/6636947.
    [47] ZHAO Z, ZHONG L, LI P, et al. Cholesterol impairs hepatocyte lysosomal function causing M1 polarization of macrophages via exosomal miR-122-5p[J]. Exp Cell Res, 2020, 387(1): 111738. DOI: 10.1016/j.yexcr.2019.111738.
    [48] SHEN M, SHEN Y, FAN X, et al. Roles of macrophages and exosomes in liver diseases[J]. Front Med (Lausanne), 2020, 7: 583691. DOI: 10.3389/fmed.2020.583691.
  • 加载中
图(2)
计量
  • 文章访问数:  854
  • HTML全文浏览量:  226
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-26
  • 录用日期:  2021-06-13
  • 出版日期:  2021-12-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回