胰腺癌肿瘤微环境的机制及靶向治疗
DOI: 10.3969/j.issn.1001-5256.2022.04.046
利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:张艺译负责收集资料,分析文献,撰写论文;徐敏负责拟定写作思路,指导撰写文章并最后定稿。
Research advances in the mechanism of tumor microenvironment in pancreatic cancer and related targeted therapy
-
摘要: 胰腺癌肿瘤微环境是一个包含胰腺星状细胞、癌相关成纤维细胞、免疫细胞和细胞外基质的过度纤维化的致密基质环境,不仅为肿瘤创造了促进其生长和侵袭的环境,并使其对化疗和其他抗肿瘤药物产生耐受抵抗。基质中密集纤维化反应和肿瘤在免疫环境中的改变被认为是目前胰腺癌治疗失败的主要原因。本文回顾了近年来胰腺癌肿瘤微环境相关研究进展,对其组成成分和致病机制以及针对基质和免疫的靶向治疗作一综述,分析肿瘤微环境对胰腺癌发生进展的重要性及其在靶向治疗方面的影响。Abstract: The tumor microenvironment of pancreatic carcinoma is a dense matrix environment with excessive fibrosis containing pancreatic stellate cells, cancer-associated fibroblasts, immune cells, and extracellular matrix, which not only creates an environment to promote the growth and invasion of tumors, but also makes them resistant to chemotherapy and other antitumor drugs. Intensive fibrosis reaction in the matrix and changes of tumors in immune environment are considered the main reasons for treatment failure in pancreatic cancer management. This article reviews the recent research advances in the tumor microenvironment of pancreatic cancer, summarizes its composition and pathogenesis and the targeted therapies for matrix and immune cells, and analyzes the importance of tumor microenvironment in the development and progression of pancreatic cancer and its impact on targeted therapy.
-
Key words:
- Pancreatic Neoplasms /
- Tumor Microenvironment /
- Immunotherapy
-
[1] FERLAY J, COLOMBET M, SOERJOMATARAM I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods[J]. Int J Cancer, 2019, 144(8): 1941-1953. DOI: 10.1002/ijc.31937. [2] AHN DH, RAMANATHAN RK, BEKAII-SAAB T. Emerging therapies and future directions in targeting the tumor stroma and immune system in the treatment of pancreatic adenocarcinoma[J]. Cancers (Basel), 2018, 10(6): 193. DOI: 10.3390/cancers10060193. [3] SIEGEL RL, MILLER KD, FUCHS HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654. [4] LAFARO KJ, MELSTROM LG. The paradoxical web of pancreatic cancer tumor microenvironment[J]. Am J Pathol, 2019, 189(1): 44-57. DOI: 10.1016/j.ajpath.2018.09.009. [5] ERKAN M, HAUSMANN S, MICHALSKI CW, et al. The role of stroma in pancreatic cancer: Diagnostic and therapeutic implications[J]. Nat Rev Gastroenterol Hepatol, 2012, 9(8): 454-467. DOI: 10.1038/nrgastro.2012.115. [6] VEENSTRA VL, GARCIA-GARIJO A, van LAARHOVEN HW, et al. Extracellular influences: Molecular subclasses and the microenvironment in pancreatic cancer[J]. Cancers (Basel), 2018, 10(2): 34. DOI: 10.3390/cancers10020034. [7] LIANG C, SHI S, MENG Q, et al. Complex roles of the stroma in the intrinsic resistance to gemcitabine in pancreatic cancer: Where we are and where we are going[J]. Exp Mol Med, 2017, 49(12): e406. DOI: 10.1038/emm.2017.255. [8] PARENTE P, PARCESEPE P, COVELLI C, et al. Crosstalk between the tumor microenvironment and immune system in pancreatic ductal adenocarcinoma: Potential targets for new therapeutic approaches[J]. Gastroenterol Res Pract, 2018, 2018: 7530619. DOI: 10.1155/2018/7530619. [9] BOUSSIOTIS VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway[J]. N Engl J Med, 2016, 375(18): 1767-1778. DOI: 10.1056/NEJMra1514296. [10] TSUKAMOTO M, IMAI K, ISHIMOTO T, et al. PD-L1 expression enhancement by infiltrating macrophage-derived tumor necrosis factor-α leads to poor pancreatic cancer prognosis[J]. Cancer Sci, 2019, 110(1): 310-320. DOI: 10.1111/cas.13874. [11] CLARK CE, HINGORANI SR, MICK R, et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion[J]. Cancer Res, 2007, 67(19): 9518-9527. DOI: 10.1158/0008-5472.CAN-07-0175. [12] VAQUERO EC, EDDERKAOUI M, NAM KJ, et al. Extracellular matrix proteins protect pancreatic cancer cells from death via mitochondrial and nonmitochondrial pathways[J]. Gastroenterology, 2003, 125(4): 1188-1202. DOI: 10.1016/s0016-5085(03)01203-4. [13] PROCACCI P, MOSCHENI C, SARTORI P, et al. Tumor stroma cross-talk in human pancreatic ductal adenocarcinoma: A focus on the effect of the extracellular matrix on tumor cell phenotype and invasive potential[J]. Cells, 2018, 7(10): 158. DOI: 10.3390/cells7100158. [14] SATO N, KOHI S, HIRATA K, et al. Role of hyaluronan in pancreatic cancer biology and therapy: Once again in the spotlight[J]. Cancer Sci, 2016, 107(5): 569-575. DOI: 10.1111/cas.12913. [15] ZHEN DB, COVELER A, ZANON S, et al. Biomarker-driven and molecularly targeted therapies for pancreatic adenocarcinoma[J]. Semin Oncol, 2018, 45(3): 107-115. DOI: 10.1053/j.seminoncol.2018.05.004. [16] ZHOU P, LI B, LIU F, et al. The epithelial to mesenchymal transition (EMT) and cancer stem cells: Implication for treatment resistance in pancreatic cancer[J]. Mol Cancer, 2017, 16(1): 52. DOI: 10.1186/s12943-017-0624-9. [17] SINGH M, YELLE N, VENUGOPAL C, et al. EMT: Mechanisms and therapeutic implications[J]. Pharmacol Ther, 2018, 182: 80-94. DOI: 10.1016/j.pharmthera.2017.08.009. [18] TRÄGER MM, DHAYAT SA. Epigenetics of epithelial-to-mesenchymal transition in pancreatic carcinoma[J]. Int J Cancer, 2017, 141(1): 24-32. DOI: 10.1002/ijc.30626. [19] ZHENG X, CARSTENS JL, KIM J, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer[J]. Nature, 2015, 527(7579): 525-530. DOI: 10.1038/nature16064. [20] GARRIDO-LAGUNA I, USON M, RAJESHKUMAR NV, et al. Tumor engraftment in nude mice and enrichment in stroma- related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer[J]. Clin Cancer Res, 2011, 17(17): 5793-5800. DOI: 10.1158/1078-0432.CCR-11-0341. [21] CATENACCI DV, JUNTTILA MR, KARRISON T, et al. Randomized Phase Ib/Ⅱ study of gemcitabine plus placebo or vismodegib, a hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer[J]. J Clin Oncol, 2015, 33(36): 4284-4292. DOI: 10.1200/JCO.2015.62.8719. [22] HAN X, LI Y, XU Y, et al. Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem[J]. Nat Commun, 2018, 9(1): 3390. DOI: 10.1038/s41467-018-05906-x. [23] HINGORANI SR, HARRIS WP, BECK JT, et al. Phase Ib study of PEGylated recombinant human hyaluronidase and gemcitabine in patients with advanced pancreatic cancer[J]. Clin Cancer Res, 2016, 22(12): 2848-2854. DOI: 10.1158/1078-0432.CCR-15-2010. [24] HINGORANI SR, ZHENG L, BULLOCK AJ, et al. HALO 202: Randomized phase Ⅱ study of PEGPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma[J]. J Clin Oncol, 2018, 36(4): 359-366. DOI: 10.1200/JCO.2017.74.9564. [25] van CUTSEM E, TEMPERO MA, SIGAL D, et al. Randomized phase Ⅲ trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma[J]. J Clin Oncol, 2020, 38(27): 3185-3194. DOI: 10.1200/JCO.20.00590. [26] RAMANATHAN RK, MCDONOUGH SL, PHILIP PA, et al. Phase IB/Ⅱ randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313[J]. J Clin Oncol, 2019, 37(13): 1062-1069. DOI: 10.1200/JCO.18.01295. [27] LI X, SHEPARD HM, COWELL JA, et al. Parallel accumulation of tumor hyaluronan, collagen, and other drivers of tumor progression[J]. Clin Cancer Res, 2018, 24(19): 4798-4807. DOI: 10.1158/1078-0432.CCR-17-3284. [28] BLAIR AB, KIM VM, MUTH ST, et al. Dissecting the stromal signaling and regulation of myeloid cells and memory effector T cells in pancreatic cancer[J]. Clin Cancer Res, 2019, 25(17): 5351-5363. DOI: 10.1158/1078-0432.CCR-18-4192. [29] LI Z, JIA Z, GAO Y, et al. Activation of vitamin D receptor signaling downregulates the expression of nuclear FOXM1 protein and suppresses pancreatic cancer cell stemness[J]. Clin Cancer Res, 2015, 21(4): 844-853. DOI: 10.1158/1078-0432.CCR-14-2437. [30] SHERMAN MH, YU RT, ENGLE DD, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy[J]. Cell, 2014, 159(1): 80-93. DOI: 10.1016/j.cell.2014.08.007. [31] LAROCCA CJ, WARNER SG. A new role for vitamin D: The enhancement of oncolytic viral therapy in pancreatic cancer[J]. Biomedicines, 2018, 6(4): 104. DOI: 10.3390/biomedicines6040104. [32] GUO Z, WANG F, DI Y, et al. Antitumor effect of gemcitabine-loaded albumin nanoparticle on gemcitabine-resistant pancreatic cancer induced by low hENT1 expression[J]. Int J Nanomedicine, 2018, 13: 4869-4880. DOI: 10.2147/IJN.S166769. [33] CANDIDO JB, MORTON JP, BAILEY P, et al. CSF1R+ macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype[J]. Cell Rep, 2018, 23(5): 1448-1460. DOI: 10.1016/j.celrep.2018.03.131. [34] SAUNG MT, MUTH S, DING D, et al. Targeting myeloid-inflamed tumor with anti-CSF-1R antibody expands CD137+ effector T-cells in the murine model of pancreatic cancer[J]. J Immunother Cancer, 2018, 6(1): 118. DOI: 10.1186/s40425-018-0435-6. [35] BANERJEE K, KUMAR S, ROSS KA, et al. Emerging trends in the immunotherapy of pancreatic cancer[J]. Cancer Lett, 2018, 417: 35-46. DOI: 10.1016/j.canlet.2017.12.012.