中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非酒精性脂肪性肝病患者粪便短链脂肪酸含量测定的临床意义

李惠 王学红 马臻棋 马文霞 杨丽萍

引用本文:
Citation:

非酒精性脂肪性肝病患者粪便短链脂肪酸含量测定的临床意义

DOI: 10.3969/j.issn.1001-5256.2022.06.016
基金项目: 

青海省消化系统疾病临床医学研究中心 (2019-SF-L3)

伦理学声明:本研究2019年8月1日通过青海大学附属医院伦理委员会审批,批号为P-SL-201958,患者及家属均签署知情同意书。
利益冲突声明:本研究不存在研究者、伦理委员会成员、受试者监护人以及与公开研究成果有关的利益冲突。
作者贡献声明:李惠、王学红、马臻棋参与研究的思路设计,修改文章关键内容;马文霞、杨丽萍参与研究数据的获取过程。
详细信息
    通信作者:

    王学红,Lindawang0710@hotmail.com

    马臻棋,876295786@qq.com

Clinical significance of the determination of fecal short-chain fatty acids in patients with nonalcoholic fatty liver disease

Research funding: 

Qinghai Digestive System Disease Clinical Medical Research Center (2019-SF-L3)

More Information
  • 摘要:   目的  通过分析非酒精性脂肪性肝病(NAFLD)各疾病谱患者粪便短链脂肪酸(SCFA)含量及非酒精性脂肪性肝炎(NASH)高危患者治疗前后粪便SCFA含量的差异,初步探讨SCFA肠道代谢与NAFLD各疾病谱发生发展的关系。  方法  选取2020年7月—2021年7月青海大学附属医院临床诊断为NAFLD的患者共90例,分为单纯性脂肪肝(NAFL)组(n=30)、NASH组(n=30)、非酒精性脂肪性肝纤维化组(n=30),选取同期健康体检者40例作为对照组,收集4组研究对象病例资料、粪便SCFA含量, 以及NASH高危患者10例治疗干预3个月后临床指标和粪便SCFA含量。满足正态分布的计量资料多组间比较采用方差分析,组内比较采用配对样本t检验;不满足正态分布的计量资料采用Kruskal-Wallis H检验,组内比较采用配对样本的Wilcoxon符号秩和检验,相关性分析采用Spearman相关分析,诊断性评价采用ROC曲线分析。  结果  非酒精性脂肪性肝纤维化组戊酸、己酸含量显著高于健康对照组,NAFL组戊酸、己酸含量显著低于健康对照组(P值均<0.05);非酒精性脂肪性肝纤维化组戊酸、己酸含量显著高于NAFL组(P值均<0.05);非酒精性脂肪性肝纤维化组戊酸含量显著高于NASH组(P<0.05);NASH组己酸含量显著高于NAFL组(P<0.05)。NASH组高危患者治疗后糖化血红蛋白、空腹血糖(FPG)、TG、TC、ALT、AST、GGT、总胆汁酸(TBA)、PT、尿酸(UA)、受控衰减参数(CAP)、肝脏硬度值(LSM)均明显低于治疗前(Z值分别为-2.805、-2.703、-2.193、-2.599、-2.805、-2.701、-2.803、-1.988、-2.807、-2.803、-2.803、-2.668,P值均<0.05);NASH组高危患者治疗后乙酸、丙酸含量均显著高于治疗前(Z值分别为-2.803、-2.803,P值均<0.05);异丁酸含量低于治疗前(Z=-2.803,P<0.05);戊酸诊断非酒精性脂肪性肝纤维化的AUC为0.842,最佳界值为141.42 μg/g,灵敏度86.7%,特异度70%;己酸诊断非酒精性脂肪性肝纤维化的AUC为0.819,最佳界值为6.93 μg/g,灵敏度70%,特异度85%。  结论  戊酸、己酸可能促进NAFLD疾病谱发展;乙酸、丙酸对NAFLD患者肝脏可能存在一定程度的保护作用,异丁酸可能促进NASH的发生发展;乙酸、丙酸对肝脏的保护作用可能进一步导致糖化血红蛋白、FPG、TG、TC、ALT、AST、GGT、TBA、PT、UA、CAP、LSM等指标的降低;戊酸、己酸诊断价值劣于三型前胶原肽,但优于四型胶原、透明质酸,推测以戊酸为141.42 μg/g、己酸为6.93 μg/g为临界值可作为早期筛查非酒精性脂肪性肝纤维化的辅助诊断指标。

     

  • 图  1  SCFA及PⅢP N-P、Ⅳ-C、HA、LN诊断非酒精性脂肪性肝纤维化ROC曲线

    Figure  1.  ROC curve of SCFA and PⅢP N-P, Ⅳ-C, HA and LN in the diagnosis of nonalcoholic fatty liver fibrosis

    表  1  4组研究对象人口学资料比较

    Table  1.   Comparison of demographic data of four groups of subjects

    项目 健康组
    (n=40)
    NAFL组
    (n=30)
    NASH组
    (n=30)
    非酒精性脂肪性肝纤维化组
    (n=30)
    统计值 P
    性别[例(%)] χ2=4.267 0.234
      男 23(57.5) 17(56.7) 23(76.7) 16(53.3)
      女 17(42.5) 13(43.3) 7(23.3) 14(46.7)
    年龄(岁) 49.10±10.85 53.40±9.00 49.03±11.21 47.03±11.79 F=1.869 0.138
    下载: 导出CSV

    表  2  4组研究对象临床生化指标比较

    Table  2.   Comparison of clinical biochemical indexes of four groups

    项目 健康组(n=40) NAFL组(n=30) NASH组(n=30) 非酒精性脂肪性肝纤维化组(n=30) 统计值 P
    BMI(kg/m2) 20.75±1.62 25.18±2.731) 28.28±3.151)2) 26.70±2.281)2)3) F=62.852 <0.001
    HbA1c(%) 5.00(4.43~5.58) 5.30(4.45~6.65) 7.95(7.60~8.33)1)2) 7.85(7.23~9.03)1)2) H=84.220 <0.001
    FPG(mmol/L) 4.80(4.40~5.27) 6.90(5.73~8.03)1) 6.75(5.45~7.80)1) 8.20(7.20~9.13)1) H=57.614 <0.001
    TG(mmol/L) 1.01(0.70~1.30) 2.17(1.35~3.41)1) 2.16(1.48~3.05)1) 2.90(2.10~4.30)1) H=62.740 <0.001
    TC(mmol/L) 4.47±0.74 4.69±0.83 4.52±1.13 4.93±0.73 F=1.831 0.145
    ALT(U/L) 25.00(21.00~30.50) 28.50(19.75~33.25) 87.00(50.50~150.00)1)2) 50.00(31.50~73.25)1)2) H=64.890 <0.001
    AST(U/L) 21.80(18.00~27.00) 20.50(17.75~23.50) 37.50(27.50~62.25)1)2) 36.50(21.75~63.75)1)2) H=36.106 <0.001
    ALP(U/L) 94.00(78.25~119.75) 87.50(74.00~107.00) 101.50(91.50~121.75) 109.00(81.25~137.50) H=6.409 0.093
    GGT(U/L) 25.00(19.00~31.75) 30.50(24.75~39.00) 102.00(57.50~268.75)1)2) 78.50(40.50~123.00)1)2) H=69.178 <0.001
    TBil(μmol/L) 18.25(16.40~21.78) 13.95(11.23~18.68)1) 17.80(11.10~26.70) 11.90(8.83~17.20)1)3) H=22.698 <0.001
    DBil(μmol/L) 2.50(1.90~2.98) 4.15(3.33~5.20)1) 4.90(4.13~8.00)1) 3.75(2.53~5.25)1)3) H=52.403 <0.001
    IBil(μmol/L) 16.13±2.93 11.04±5.091) 13.09±7.121) 8.95±4.061)3) F=13.548 <0.001
    TBA(μmol/L) 4.74(3.80~5.34) 4.04(2.30~6.87) 4.71(3.73~7.41) 7.52(4.09~9.87)1)2) H=12.455 0.006
    Alb(g/L) 48.12±3.51 43.60±3.291) 41.70±4.571) 45.25±3.971)3) F=17.546 <0.001
    GLB(g/L) 26.21±6.36 26.32±2.90 26.83±4.40 27.67±5.40 F=0.554 0.646
    PT(s) 10.95(9.80~11.60) 9.90(9.68~10.23)1) 10.20(9.68~10.63) 9.75(9.45~10.33)1) H=17.139 0.001
    APTT(s) 27.38±2.37 23.47±2.661) 24.97±4.641) 23.33±4.091) F=10.407 <0.001
    UA(μmol/L) 301.00(258.50~328.75) 310.00(243.25~440.50) 347.00(292.75~429.75)1) 321.50(286.25~380.50) H=11.066 0.011
    CAP(dB/m) 177.66(155.25~198.00) 290.50(258.25~316.50)1) 334.50(295.00~359.75)1) 313.50(262.25~342.50)1) H=81.927 <0.001
    LSM(kPa) 4.65(4.13~5.28) 4.00(3.68~4.85) 6.25(5.30~7.38)1)2) 9.60(8.85~10.48)1)2)3) H=89.958 <0.001
    注:与健康组比较,1)P<0.05;与NAFL组比较,2)P<0.05;与NASH组比较,3)P<0.05。
    下载: 导出CSV

    表  3  4组研究对象SCFA水平测定

    Table  3.   Determination of short chain fatty acids level of four groups of subjects

    项目 健康组(n=40) NAFL组(n=30) NASH组(n=30) 非酒精性脂肪性肝纤维化组(n=30) 统计值 P
    乙酸(μg/g) 1463.63±408.10 1438.24±539.47 1259.68±467.97 1343.57±436.10 F=1.339 0.265
    丙酸(μg/g) 702.74±241.86 747.38±349.46 756.53±421.36 710.30±321.60 F=0.212 0.888
    异丁酸(μg/g) 68.74(48.83~104.64) 50.09(16.91~94.80) 66.99(24.30~106.96) 50.40(35.02~83.74) H=2.763 0.430
    丁酸(μg/g) 700.38±300.18 567.76±329.82 591.70±282.18 763.35±343.67 F=2.644 0.052
    异戊酸(μg/g) 64.60(45.13~102.57) 47.00(16.94~74.37) 65.61(21.95~112.67) 47.64(20.28~77.13) H=4.635 0.201
    戊酸(μg/g) 123.18(102.53~159.78) 52.64(7.38~128.77)1) 99.85(31.73~232.23) 204.17(160.05~236.48)1)2)3) H=36.082 <0.001
    己酸(μg/g) 4.92(3.81~6.16) 1.33(0.87~2.94)1) 6.39(1.61~28.03)2) 7.96(5.95~10.45)1)2) H=36.414 <0.001
    注:与健康组比较,1)P<0.05;与NAFL组比较,2)P<0.05;与NASH组比较,3)P<0.05。
    下载: 导出CSV

    表  4  治疗前后临床指标比较

    Table  4.   Comparison of clinical indexes before and after treatment

    项目 治疗前 治疗后 Z P
    HbA1c(%) 7.75(7.28~8.35) 3.80(3.43~4.80) -2.805 0.005
    FPG(mmol/L) 7.30(5.45~7.95) 4.70(4.13~5.33) -2.703 0.007
    TG(mmol/L) 2.40(1.45~3.20) 1.42(1.32~1.58) -2.193 0.028
    TC(mmol/L) 4.49(3.95~5.43) 3.64(3.15~4.23) -2.599 0.009
    ALT(U/L) 151.00(119.50~168.50) 34.00(21.00~42.75) -2.805 0.005
    AST(U/L) 51.50(32.75~113.50) 19.50(17.75~21.25) -2.701 0.007
    ALP(U/L) 108.50(93.50~121.50) 83.50(73.50~97.50) -1.939 0.052
    GGT(U/L) 100.50(67.50~136.25) 24.50(19.00~30.25) -2.803 0.005
    TBil(μmol/L) 19.30(16.90~37.25) 20.70(19.30~21.70) -0.459 0.646
    DBil(μmol/L) 5.20(4.25~9.15) 4.05(2.35~7.00) -1.580 0.114
    IBil(μmol/L) 13.45(8.45~19.40) 17.95(17.18~19.03) -1.172 0.241
    TBA(μmol/L) 7.43(4.28~9.14) 3.45(3.05~4.56) -1.988 0.047
    Alb(g/L) 45.60(41.15~48.08) 46.50(43.80~52.93) -1.784 0.074
    GLB(g/L) 25.30(21.80~27.35) 27.15(23.98~36.63) -1.886 0.059
    PT(s) 10.15(9.90~10.75) 7.05(5.83~7.73) -2.807 0.005
    APTT(s) 23.10(22.15~26.23) 23.05(21.38~25.38) -0.561 0.575
    UA(μmol/L) 427.50(340.00~542.00) 225.50(168.75~298.50) -2.803 0.005
    CAP(dB/m) 328.00(287.75~353.00) 159.50(131.25~223.75) -2.803 0.005
    LSM(kPa) 5.90(4.80~7.40) 4.00(3.18~4.70) -2.668 0.008
    下载: 导出CSV

    表  5  治疗前后SCFA水平比较

    Table  5.   Comparison of SCFA level before and after treatment

    项目 治疗前 治疗后 Z P
    乙酸(μg/g) 1052.69(678.66~1621.09) 1412.39(1118.70~1865.72) -2.803 0.005
    丙酸(μg/g) 787.81(338.24~1142.04) 955.57(556.52~1273.95) -2.803 0.005
    异丁酸(μg/g) 49.82(17.00~106.54) 22.71(9.05~61.05) -2.803 0.005
    丁酸(μg/g) 711.04(327.18~852.75) 690.86(549.47~967.25) -1.070 0.285
    异戊酸(μg/g) 38.48(16.84~120.40) 41.37(22.29~71.78) -0.866 0.386
    戊酸(μg/g) 86.00(16.34~294.74) 40.97(25.31~101.97) -1.784 0.074
    己酸(μg/g) 2.41(1.52~13.41) 2.45(1.78~3.32) -0.764 0.445
    下载: 导出CSV

    表  6  肠道内主要微生物数量及其代谢产物

    Table  6.   The number of major microorganisms in the gut and their metabolites

    菌属 粪便中平均菌数
    (log10, CFU/g)
    主要发酵产物
    拟杆菌属 11.3 乙酸、丁酸、琥珀酸
    双歧杆菌属 10.2 乙酸、乳酸、甲酸
    真杆菌属 10.7 乙酸、丁酸、乳酸
    瘤胃球菌属 10.2 乙酸
    消化链球菌属 10.1 乙酸、乳酸
    梭菌属 9.8 乙酸、丙酸、丁酸、乳酸
    乳杆菌属 9.6 乳酸
    链球菌属 8.3 乙酸、乳酸
    下载: 导出CSV
  • [1] RINELLA ME, SANYAL AJ. NAFLD in 2014: Genetics, diagnostics and therapeutic advances in NAFLD[J]. Nat Rev Gastroenterol Hepatol, 2015, 12(2): 65-66. DOI: 10.1038/nrgastro.2014.232.
    [2] National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association; Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease: A 2018 update[J]. J Clin Hepatol, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.

    中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.
    [3] JIAN J, ZHU X. Biological mechanism of intestinal flora in the occurrence and development of nonalcoholic fatty liver disease[J]. Chin J Biochem Mol Biol, 2020, 36(8): 888-894. DOI: 10.13865/j.cnki.cjbmb.2020.05.1061.

    简捷, 朱萱. 肠道菌群在非酒精性脂肪性肝病发生发展中的生物学机制[J]. 中国生物化学与分子生物学报, 2020, 36(8): 888-894. DOI: 10.13865/j.cnki.cjbmb.2020.05.1061.
    [4] MURAG S, AHMED A, KIM D. Recent epidemiology of nonalcoholic fatty liver disease[J]. Gut Liver, 2021, 15(2): 206-216. DOI: 10.5009/gnl20127
    [5] MICHELOTTI GA, MACHADO MV, DIEHL AM. NAFLD, NASH and liver cancer[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(11): 656-665. DOI: 10.1038/nrgastro.2013.183.
    [6] FRIEDMAN SL, NEUSCHWANDER-TETRI BA, RINELLA M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7): 908-922. DOI: 10.1038/s41591-018-0104-9.
    [7] BUZZETTI E, PINZANI M, TSOCHATZIS EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65(8): 1038-1048. DOI: 10.1016/j.metabol.2015.12.012.
    [8] HUI DC, SUN MY. Association between nonalcoholic fatty liver disease and gut microbiota based on the theory of gut-liver axis[J]. J Clin Hepatol, 2020, 36(7): 1627-1630. DOI: 10.3969/j.issn.1001-5256.2020.07.039.

    惠登城, 孙明瑜. 基于肠-肝轴理论探讨非酒精性脂肪性肝病和肠道菌群的关系[J]. 临床肝胆病杂志, 2020, 36(7): 1627-1630. DOI: 10.3969/j.issn.1001-5256.2020.07.039.
    [9] MENG Q, DUAN XP, WANG CY, et al. Alisol B 23-acetate protects against non-alcoholic steatohepatitis in mice via farnesoid X receptor activation[J]. Acta Pharmacol Sin, 2017, 38(1): 69-79. DOI: 10.1038/aps.2016.119.
    [10] PINGITORE A, CHAMBERS ES, HILL T, et al. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro[J]. Diabetes Obes Metab, 2017, 19(2): 257-265. DOI: 10.1111/dom.12811.
    [11] JIN CJ, SELLMANN C, ENGSTLER AJ, et al. Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (NASH)[J]. Br J Nutr, 2015, 114(11): 1745-1755. DOI: 10.1017/S0007114515003621.
    [12] PERRY RJ, PENG L, BARRY NA, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome[J]. Nature, 2016, 534(7606): 213-217. DOI: 10.1038/nature18309.
    [13] ZHOU D, FAN JG. Microbial metabolites in non-alcoholic fatty liver disease[J]. World J Gastroenterol, 2019, 25(17): 2019-2028. DOI: 10.3748/wjg.v25.i17.2019.
    [14] CUI Y, WANG Q, CHANG R, et al. Intestinal barrier function-non-alcoholic fatty liver disease interactions and possible role of gut microbiota[J]. J Agric Food Chem, 2019, 67(10): 2754-2762. DOI: 10.1021/acs.jafc.9b00080.
    [15] Fatty liver and alcoholic liver disease group, Hepatology branch, Chinese Medical Association. Guidelines for the diagnosis and treatment of nonalcoholic fatty liver disease[J]. Chin Hepatol, 2006, 11(1): 68-70. DOI: 10.3969/j.issn.1008-1704.2006.01.032.

    中华医学会肝脏病学分会脂肪肝和酒精性肝病学组. 非酒精性脂肪性肝病诊疗指南[J]. 肝脏, 2006, 11(1): 68-70. DOI: 10.3969/j.issn.1008-1704.2006.01.032.
    [16] LIKHITSUP A, DUNDULIS J, ANSARI S, et al. Prevalence of non-alcoholic fatty liver disease on computed tomography in patients with inflammatory bowel disease visiting an emergency department[J]. Ann Gastroenterol, 2019, 32(3): 283-286. DOI: 10.20524/aog.2019.0371.
    [17] YOUNOSSI ZM, MARCHESINI G, PINTO-CORTEZ H, et al. Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: Implications for liver transplantation[J]. Transplantation, 2019, 103(1): 22-27. DOI: 10.1097/TP.0000000000002484.
    [18] LOOMBA R, FRIEDMAN SL, SHULMAN GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease[J]. Cell, 2021, 184(10): 2537-2564. DOI: 10.1016/j.cell.2021.04.015.
    [19] THANAPIROM K, TSOCHATZIS EA. Non-alcoholic fatty liver disease (NAFLD) and the quest for effective treatments[J]. Hepatobiliary Surg Nutr, 2019, 8(1): 77-79. DOI: 10.21037/hbsn.2018.11.06.
    [20] DOU KF, YANG XS. Surgeons should attach importance to the understanding of metabolic associated fatty liver disease[J]. Chin J Dig Surg, 2021, 1(1): 40-45. DOI: 10.3760/cma.j.cn115610-20201214-00780.

    窦科峰, 杨西胜. 外科医师应重视对代谢相关脂肪性肝病的认识[J]. 中华消化外科杂志, 2021, 1(1): 40-45. DOI: 10.3760/cma.j.cn115610-20201214-00780.
    [21] LIAN XX, GUO XX. Research progress of gut liver axis theory[J]. Chin J Integr Tradit West Med Liver Dis, 2017, 27(4): 251-254. DOI: 10.3969/j.issn.1005-0264.2017.04.023.

    廉晓晓, 郭晓霞. 肠-肝轴学说的研究进展[J]. 中西医结合肝病杂志, 2017, 27(4): 251-254. DOI: 10.3969/j.issn.1005-0264.2017.04.023.
    [22] ZHANG YN, LIU YT. Correlation between the degree of liver fibrosis and chronic kidney disease in patients with nonalcoholic fatty liver disease[J]. Chin J Gerontol, 2021, 41(19): 4214-4218. DOI: 10.3969/j.issn.1005-9202.2021.19.018.

    章雅南, 刘奕婷. 非酒精性脂肪性肝病患者肝纤维化程度与慢性肾病的相关性[J]. 中国老年学杂志, 2021, 41(19): 4214-4218. DOI: 10.3969/j.issn.1005-9202.2021.19.018.
    [23] GANAPATHY V, THANGARAJU M, PRASAD PD, et al. Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host[J]. Curr Opin Pharmacol, 2013, 13(6): 869-874. DOI: 10.1016/j.coph.2013.08.006.
    [24] LIU SZ, ZHANG Y, ZHANG MW, et al. Research progress on the production mechanism and physiological function of intestinal short chain fatty acids[J]. Guangdong Agricultural Science, 2013, 40(11): 99-103. DOI: 10.3969/j.issn.1004-874x.2013.11.029.

    刘松珍, 张雁, 张名位, 等. 肠道短链脂肪酸产生机制及生理功能的研究进展[J]. 广东农业科学, 2013, 40(11): 99-103. DOI: 10.3969/j.issn.1004-874X.2013.11.029.
    [25] BOETS E, GOMAND SV, DEROOVER L, et al. Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: A stable isotope study[J]. J Physiol, 2017, 595(2): 541-555. DOI: 10.1113/JP272613.
    [26] CUI LH. Relationship between gut microbiota and digestive disease[J] Acad J Chinese PLA Postgrad Med Sch, 2015, 36 (10): 965-969. DOI: 10.3969/j.issn.2095-5227.2015.10.001.

    崔立红. 肠道菌群与消化系疾病的关系[J]. 解放军医学院学报, 2015, 36(10): 965-969. DOI: 10.3969/j.issn.2095-5227.2015.10.001.
    [27] TILG H, MOSCHEN AR, RODEN M. NAFLD and diabetes mellitus[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(1): 32-42. DOI: 10.1038/nrgastro.2016.147.
    [28] KHNEIZER G, RIZVI S, GAWRIEH S. Non-alcoholic fatty liver disease and diabetes mellitus[J]. Adv Exp Med Biol, 2021, 1307: 417-440. DOI: 10.1007/5584_2020_532.
    [29] POLYZOS SA, KOUNTOURAS J, MANTZOROS CS. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutic[J]. Metabolism, 2019, 92: 82-97. DOI: 10.1016/j.metabol.2018.11.014.
    [30] YIN JM. Investigation on NAFLD prevalence and risk factors based on physical examination population[D]. Tianjin: Tianjin Medical University, 2012.

    殷珺妹. 基于健康体检人群的NAFLD患病率及危险因素调查[D]. 天津: 天津医科大学, 2012.
    [31] EDDOWES PJ, SASSO M, ALLISON M, et al. Accuracy of fibroScan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease[J]. Gastroenterology, 2019, 156(6): 1717-1730. DOI: 10.1053/j.gastro.2019.01.042.
    [32] VUPPALANCHI R, SIDDIQUI MS, VAN NATTA ML, et al. Performance characteristics of vibration-controlled transient elastography for evaluation of nonalcoholic fatty liver disease[J]. Hepatology, 2018, 67(1): 134-144. DOI: 10.1002/hep.29489.
    [33] CHENG J, LI FL, ZHANG B, et al. Effect of high-fat diet on intestinal short chain fatty acids in rats with nonalcoholic fatty liver disease[J]. Chin J Clin Nutr, 2016, 24(4): 236-240. DOI: 10.3760/cma.j.issn.1674-635x.2016.04.009.

    程靖, 李枫林, 张宝, 等. 高脂饮食对非酒精性脂肪肝病模型大鼠肠道短链脂肪酸的影响[J]. 中华临床营养杂志, 2016, 24(4): 236-240. DOI: 10.3760/cma.j.issn.1674-635X.2016.04.009.
    [34] LIANG Y, LIN C, ZHANG Y, et al. Probiotic mixture of Lactobacillus and Bifidobacterium alleviates systemic adiposity and inflammation in non-alcoholic fatty liver disease rats through Gpr109a and the commensal metabolite butyrate[J]. Inflammopharmacology, 2018, 26(4): 1051-1055. DOI: 10.1007/s10787-018-0479-8.
  • 加载中
图(1) / 表(6)
计量
  • 文章访问数:  866
  • HTML全文浏览量:  313
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 录用日期:  2021-11-10
  • 出版日期:  2022-06-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回