中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

免疫检查点TIGIT/CD155对原发性肝癌免疫微环境的调控作用及应用展望

姚帆 殷欣

引用本文:
Citation:

免疫检查点TIGIT/CD155对原发性肝癌免疫微环境的调控作用及应用展望

DOI: 10.3969/j.issn.1001-5256.2022.11.039
基金项目: 

国家自然科学基金 (81972889)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:殷欣对文章的思路有关键贡献并参与修改文章关键内容;姚帆参与收集关键参考文献以及撰写文章。
详细信息
    通信作者:

    殷欣, yin.xin@zs-hospital.sh.cn

Regulatory effect of immune checkpoint TIGIT/CD155 on the immune microenvironment of primary liver cancer and its application prospects

Research funding: 

National Natural Science Foundation of China (81972889)

More Information
  • 摘要: 随着免疫检查点抑制剂在各种实体瘤中得到了应用,耐药性和疗效不佳等问题随之而来,所以为了更好地改善患者的预后,探索更佳的免疫治疗方案刻不容缓。本文介绍了一种新兴的免疫检查点TIGIT及其高亲和力配体CD155,总结了TIGIT/CD155通路对肝癌免疫微环境的调控作用,并归纳了针对TIGIT的抑制剂在肝癌免疫治疗中的应用。认为TIGIT/CD155可以通过免疫细胞和基质细胞等改变肝癌的免疫微环境,从而造成免疫逃逸使病情恶化。分析表明,针对TIGIT的靶向治疗会成为将来肝癌治疗发展的新方向,并在免疫联合治疗中发挥重要作用。

     

  • 图  1  TIGIT/CD155通路对肝癌免疫微环境的调控作用

    Figure  1.  Regulation of TIGIT/CD155 pathway on immune microenvironment of hepatocellular carcinoma

    表  1  TIGIT免疫检查点抑制剂在实体瘤免疫治疗中的应用

    Table  1.   Application of TIGIT immune checkpoint inhibitors in immunotherapy of solid tumor

    TIGIT抑制剂 试验号 研究年份 研究疾病 试验内容 试验阶段 试验方式
    BGB-A1217 NCT04948697 2021年 晚期HCC 与贝伐珠单抗(BAT1706)或替雷利珠单抗(BGB-A317)联合治疗 Ⅱ期 对照试验
    AB154 NCT03628677 2018年 晚期恶性实体肿瘤 单药治疗或与塞帕利单抗(AB122)联合治疗 Ⅰ期 对照试验
    IBI-939 NCT04353830 2020年 晚期恶性肿瘤 单药治疗或与信迪利单抗联合治疗 Ⅰ期 对照试验
    M-6223 NCT04457778 2020年 转移性或局部晚期不可切除实体肿瘤 单药治疗或与M7824(PD-1/TGFβ双靶向药物)联合治疗 Ⅰ期 对照试验
    AGEN1777 NCT05025085 2020年 晚期实体肿瘤 单药治疗或与一种PD-1抑制剂联合治疗 Ⅰ期 对照试验
    IBI-321 NCT04911894 NCT04911881 2021年 晚期实体肿瘤 单药治疗 Ⅰ期 单臂试验
    MK-7684 NCT05007106 2021年 包括HCC在内的8种晚期实体肿瘤 与PD-1抑制剂或分子靶向药物等联合治疗 Ⅱ期 对照试验
    ASP8374 NCT03945253 2019年 晚期实体肿瘤 单药治疗 Ⅰ期 对照试验
    BAT6005 NCT05116709 2021年 局部或转移性晚期实体肿瘤 单药治疗 Ⅰ期 单臂试验
    下载: 导出CSV
  • [1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
    [2] YUAN SX, ZHOU WP. Progress and hot spots of comprehensive treatment for primary liver cancer[J]. Chin J Dig Surg, 2021, 20(2): 163-170. DOI: 10.3760/cma.j.cn115610-20201211-00776.

    袁声贤, 周伟平. 原发性肝癌综合治疗的进展和热点[J]. 中华消化外科杂志, 2021, 20(2): 163-170. DOI: 10.3760/cma.j.cn115610-20201211-00776.
    [3] WEI JY, SUN W, LIU XM, et al. Advances in targeted therapy and immunotherapy for hepatocelluar carcinoma[J]. J Clin Hepatol, 2020, 36(10): 2320-2324. DOI: 10.3969/j.issn.1001-5256.2020.10.035.

    魏建莹, 孙巍, 刘晓民, 等. 肝细胞癌的靶向及免疫治疗进展[J]. 临床肝胆病杂志, 2020, 36(10): 2320-2324. DOI: 10.3969/j.issn.1001-5256.2020.10.035.
    [4] QIN XY, LIU YY, KANG Q. Prevention and therapeutic strategies and targeted immunotherapy for hepatocellular carcinoma recurrence and metastasis after liver transplantation[J]. Ogran Transplant, 2022, 13(2): 271-276. DOI: 10.3969/j.issn.1674-7445.2022.02.018.

    秦小琰, 刘彦尧, 康权. 肝癌肝移植术后复发转移的防治策略和靶向免疫治疗[J]. 器官移植, 2022, 13(2): 271-276. DOI: 10.3969/j.issn.1674-7445.2022.02.018.
    [5] ZONGYI Y, XIAOWU L. Immunotherapy for hepatocellular carcinoma[J]. Cancer Lett, 2020, 470: 8-17. DOI: 10.1016/j.canlet.2019.12.002.
    [6] SADEGHI RAD H, MONKMAN J, WARKIANI ME, et al. Understanding the tumor microenvironment for effective immunotherapy[J]. Med Res Rev, 2021, 41(3): 1474-1498. DOI: 10.1002/med.21765.
    [7] GUAN QT, HAN MW, XI D. Research progress of immune checkpoint inhibitors in the treatment of hepatocellular carcinoma[J]. J Inter Intens Med, 2021, 27(3): 187-192. DOI: 10.11768/nkjwzzzz20210303.

    关倩婷, 韩美文, 习东. 免疫检查点抑制剂治疗肝细胞癌的研究进展[J]. 内科急危重症杂志, 2021, 27(3): 187-192. DOI: 10.11768/nkjwzzzz20210303.
    [8] YU X, HARDEN K, GONZALEZ LC, et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells[J]. Nat Immunol, 2009, 10(1): 48-57. DOI: 10.1038/ni.1674.
    [9] DUAN X, LIU J, CUI J, et al. Expression of TIGIT/CD155 and correlations with clinical pathological features in human hepatocellular carcinoma[J]. Mol Med Rep, 2019, 20(4): 3773-3781. DOI: 10.3892/mmr.2019.10641.
    [10] LUPO KB, MATOSEVIC S. CD155 immunoregulation as a target for natural killer cell immunotherapy in glioblastoma[J]. J Hematol Oncol, 2020, 13(1): 76. DOI: 10.1186/s13045-020-00913-2.
    [11] ZHANG J, ZHU Y, WANG Q, et al. Poliovirus receptor CD155 is up-regulated in muscle-invasive bladder cancer and predicts poor prognosis[J]. Urol Oncol, 2020, 38(2): 41. DOI: 10.1016/j.urolonc.2019.07.006.
    [12] SUN H, HUANG Q, HUANG M, et al. Human CD96 correlates to natural killer cell exhaustion and predicts the prognosis of human hepatocellular carcinoma[J]. Hepatology, 2019, 70(1): 168-183. DOI: 10.1002/hep.30347.
    [13] DEUSS FA, WATSON GM, FU Z, et al. Structural basis for CD96 immune receptor recognition of nectin-like protein-5, CD155[J]. Structure, 2019, 27(2): 219-228. e3. DOI: 10.1016/j.str.2018.10.023.
    [14] ZHANG C, WANG Y, XUN X, et al. TIGIT can exert immunosuppressive effects on CD8+ T cells by the CD155/TIGIT signaling pathway for hepatocellular carcinoma in vitro[J]. J Immunother, 2020, 43(8): 236-243. DOI: 10.1097/CJI.0000000000000330.
    [15] LIU X, LI M, WANG X, et al. PD-1+ TIGIT+ CD8+ T cells are associated with pathogenesis and progression of patients with hepatitis B virus-related hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2019, 68(12): 2041-2054. DOI: 10.1007/s00262-019-02426-5.
    [16] ZONG L, PENG H, SUN C, et al. Breakdown of adaptive immunotolerance induces hepatocellular carcinoma in HBsAg-tg mice[J]. Nat Commun, 2019, 10(1): 221. DOI: 10.1038/s41467-018-08096-8.
    [17] SHI H, CHI H. Metabolic control of treg cell stability, plasticity, and tissue-specific heterogeneity[J]. Front Immunol, 2019, 10: 2716. DOI: 10.3389/fimmu.2019.02716.
    [18] TREHANPATI N, VYAS AK. Immune regulation by T regulatory cells in hepatitis B virus-related inflammation and cancer[J]. Scand J Immunol, 2017, 85(3): 175-181. DOI: 10.1111/sji.12524.
    [19] JOLLER N, LOZANO E, BURKETT PR, et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses[J]. Immunity, 2014, 40(4): 569-581. DOI: 10.1016/j.immuni.2014.02.012.
    [20] SUN C, XU J, HUANG Q, et al. High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer[J]. Oncoimmunology, 2017, 6(1): e1264562. DOI: 10.1080/2162402X.2016.1264562.
    [21] YU L, LIU X, WANG X, et al. TIGIT+ TIM-3+ NK cells are correlated with NK cell exhaustion and disease progression in patients with hepatitis B virus-related hepatocellular carcinoma[J]. Oncoimmunology, 2021, 10(1): 1942673. DOI: 10.1080/2162402X.2021.1942673.
    [22] YIN Z, DONG C, JIANG K, et al. Heterogeneity of cancer-associated fibroblasts and roles in the progression, prognosis, and therapy of hepatocellular carcinoma[J]. J Hematol Oncol, 2019, 12(1): 101. DOI: 10.1186/s13045-019-0782-x.
    [23] INOUE T, ADACHI K, KAWANA K, et al. Cancer-associated fibroblast suppresses killing activity of natural killer cells through downregulation of poliovirus receptor (PVR/CD155), a ligand of activating NK receptor[J]. Int J Oncol, 2016, 49 (4) : 1297-1304. DOI: 10.3892/ijo.2016.3631.
    [24] HORVATH L, PIRCHER A. ASCO 2020 non-small lung cancer (NSCLC) personal highlights[J]. Memo, 2021, 14(1): 66-69. DOI: 10.1007/s12254-020-00673-2.
    [25] LI D. Research progress of immune checkpoint PD-1/PD-L1 inhibitor resistance mechanism and treatment strategy[J]. China & Foreign Medical Treatment, 2021, 40(17): 195-198. DOI: 10.16662/j.cnki.1674-0742.2021.17.195.

    李典. 免疫检查点PD-1/PD-L1抑制剂耐药机制与治疗策略的研究进展[J]. 中外医疗, 2021, 40(17): 195-198. DOI: 10.16662/j.cnki.1674-0742.2021.17.195.
    [26] HUNG AL, MAXWELL R, THEODROS D, et al. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM[J]. Oncoimmunology, 2018, 7(8): e1466769. DOI: 10.1080/2162402X.2018.1466769.
    [27] HAN HS, JEONG S, KIM H, et al. TOX-expressing terminally exhausted tumor-infiltrating CD8+ T cells are reinvigorated by co-blockade of PD-1 and TIGIT in bladder cancer[J]. Cancer Lett, 2021, 499: 137-147. DOI: 10.1016/j.canlet.2020.11.035.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  698
  • HTML全文浏览量:  138
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-01
  • 录用日期:  2022-05-09
  • 出版日期:  2022-11-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回