中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近红外荧光成像在肝细胞癌肝切除术中的应用

段彦亨 安家泽

引用本文:
Citation:

近红外荧光成像在肝细胞癌肝切除术中的应用

DOI: 10.3969/j.issn.1001-5256.2023.03.031
基金项目: 

国家自然科学基金面上项目 (81773177)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:段彦亨负责收集文献,资料分析,撰写论文;安家泽负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    安家泽, anjiaze68@163.com (ORCID: 0000-0002-5839-4992)

Application of near-infrared fluorescence imaging in hepatectomy of hepatocellular carcinoma

Research funding: 

National Natural Science Foundation of China (General Program) (81773177)

More Information
  • 摘要: 肝细胞癌(HCC)的治疗是以手术为主的综合治疗,肝切除术需要切除原发性肿瘤并最大限度地保留正常肝组织。然而,在临床手术中,肉眼和触诊难以精确识别肿瘤组织及其边界,往往导致切除不足或过度切除。近红外荧光(NIRF)成像是一种实时、低成本、无创、高灵敏度的成像技术,在引导手术切除肿瘤的应用中得到了广泛的研究。随着荧光成像系统和荧光探针的发展,可以实现术中肿瘤定位和边界确定,使手术更加准确。本文回顾了用于HCC术中导航的各种NIRF探针的发展,并讨论了这些探针的当前挑战和潜在机遇。

     

  • [1] General Office of National Health Commission. Standard for diagnosis and treatment of primary liver cancer (2022 edition)[J]. J Clin Hepatol, 2022, 38(2): 288-303. DOI: 10.3969/j.issn.1001-5256.2022.02.009.

    国家卫生健康委办公厅. 原发性肝癌诊疗指南(2022年版)[J]. 临床肝胆病杂志, 2022, 38(2): 288-303. DOI: 10.3969/j.issn.1001-5256.2022.02.009.
    [2] AUFHAUSER DD Jr, SADOT E, MURKEN DR, et al. Incidence of occult intrahepatic metastasis in hepatocellular carcinoma treated with transplantation corresponds to early recurrence rates after partial hepatectomy[J]. Ann Surg, 2018, 267(5): 922-928. DOI: 10.1097/SLA.0000000000002135.
    [3] SHINN J, LEE S, LEE HK, et al. Recent progress in development and applications of second near-infrared (NIR-Ⅱ) nanoprobes[J]. Arch Pharm Res, 2021, 44(2): 165-181. DOI: 10.1007/s12272-021-01313-x.
    [4] KENRY, DUAN Y, LIU B. Recent advances of optical imaging in the second near-infrared window[J]. Adv Mater, 2018, 30(47): e1802394. DOI: 10.1002/adma.201802394.
    [5] ZHENG F, HUANG X, DING J, et al. NIR-Ⅰ dye-based probe: a new window for bimodal tumor theranostics[J]. Front Chem, 2022, 10: 859948. DOI: 10.3389/fchem.2022.859948.
    [6] REINHART MB, HUNTINGTON CR, BLAIR LJ, et al. Indocyanine green: historical context, current applications, and future considerations[J]. Surg Innov, 2016, 23(2): 166-175. DOI: 10.1177/1553350615604053.
    [7] ISHIZAWA T, MASUDA K, URANO Y, et al. Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma[J]. Ann Surg Oncol, 2014, 21(2): 440-448. DOI: 10.1245/s10434-013-3360-4.
    [8] ISHIZAWA T, FUKUSHIMA N, SHIBAHARA J, et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging[J]. Cancer, 2009, 115(11): 2491-2504. DOI: 10.1002/cncr.24291.
    [9] SATOU S, ISHIZAWA T, MASUDA K, et al. Indocyanine green fluorescent imaging for detecting extrahepatic metastasis of hepatocellular carcinoma[J]. J Gastroenterol, 2013, 48(10): 1136-1143. DOI: 10.1007/s00535-012-0709-6.
    [10] MORITA Y, SAKAGUCHI T, UNNO N, et al. Detection of hepatocellular carcinomas with near-infrared fluorescence imaging using indocyanine green: its usefulness and limitation[J]. Int J Clin Oncol, 2013, 18(2): 232-241. DOI: 10.1007/s10147-011-0367-3.
    [11] PI ZH, LIU H, GONG SC. Application of indocyanine green fluorescence imaging in hepatobiliary surgery[J/OL]. Chin J Hepat Surg(Electronic Edition), 2021, 10(06): 555-558. DOI: 10.3877/cma.j.issn.2095-3232.2021.06.005.

    皮志恢, 刘辉, 龚帅昌, 等. 吲哚氰绿荧光成像技术在肝胆外科中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2021, 10(06): 555-558. DOI: 10.3877/cma.j.issn.2095-3232.2021.06.005.
    [12] ZHANG YM, SHI R, HOU JC, et al. Liver tumor boundaries identified intraoperatively using real-time indocyanine green fluorescence imaging[J]. J Cancer Res Clin Oncol, 2017, 143(1): 51-58. DOI: 10.1007/s00432-016-2267-4.
    [13] XU Q, KOBAYASHI S, YE X, et al. Comparison of hepatic resection and radiofrequency ablation for small hepatocellular carcinoma: a meta-analysis of 16, 103 patients[J]. Sci Rep, 2014, 4: 7252. DOI: 10.1038/srep07252.
    [14] WANG JW, ZHANG YM. Research advances in methods for determination of tumor boundary in hepatectomy[J]. J Clin Hepatol, 2016, 32(2): 374-377. DOI: 10.3969/j.issn.1001-5256.2016.02.039.

    王金伟, 张雅敏. 肝切除术中确定肿瘤边界方法的研究进展[J]. 临床肝胆病杂志, 2016, 32(2): 374-377. DOI: 10.3969/j.issn.1001-5256.2016.02.039.
    [15] MIYATA A, ISHIZAWA T, TANI K, et al. Reappraisal of a dye-staining technique for anatomic hepatectomy by the concomitant use of indocyanine green fluorescence imaging[J]. J Am Coll Surg, 2015, 221(2): e27-e36. DOI: 10.1016/j.jamcollsurg.2015.05.005.
    [16] WANG TY, ZHU YF, SUN M, et al. Application of three-dimensional reconstruction combined with indocyanine green intraoperative navigation in diagnosis and treatment of liver cancer[J]. J Jilin Univ(Med Edit), 2021, 47(4): 1014-1021. DOI: 10.13481/j.1671-587X.20210427.

    王天一, 朱玉峰, 孙淼, 等. 三维重建联合吲哚菁绿术中导航在肝癌诊断和治疗中的应用[J]. 吉林大学学报(医学版), 2021, 47(4): 1014-1021. DOI: 10.13481/j.1671-587X.20210427.
    [17] ZHENG JH, ZHAI ST, LIANG X. Laparoscopic portal territory hepatectomy (extended segment 5) by an indocyanine green fluorescent dual staining technique (video)[J]. J Gastrointest Surg, 2021, 25(1): 329-330. DOI: 10.1007/s11605-020-04764-7.
    [18] ITO D, ISHIZAWA T, HASEGAWA K. Laparoscopic positive staining of hepatic segments using indocyanine green-fluorescence imaging[J]. J Hepatobiliary Pancreat Sci, 2020, 27(7): 441-443. DOI: 10.1002/jhbp.726.
    [19] HE JM, ZHEN ZP, YE Q, et al. Laparoscopic anatomical segment Ⅶ resection for hepatocellular carcinoma using the Glissonian approach with indocyanine green dye fluorescence[J]. J Gastrointest Surg, 2020, 24(5): 1228-1229. DOI: 10.1007/s11605-019-04468-7.
    [20] KIM YS, CHOI SH. Pure laparoscopic living donor right hepatectomy using real-time indocyanine green fluorescence imaging[J]. J Gastrointest Surg, 2019, 23(8): 1711-1712. DOI: 10.1007/s11605-019-04217-w.
    [21] CHEN ZS, LIN KC, LIU JF. Application of three-dimensional visualization in surgical operation for primary liver cancer[J]. J Clin Hepatol, 2022, 38(3): 505-509. DOI: 10.3969/j.issn.1001-5256.2022.03.003.

    陈昭硕, 林科灿, 刘景丰. 三维可视化技术在原发性肝癌外科手术中的应用[J]. 临床肝胆病杂志, 2022, 38(3): 505-509. DOI: 10.3969/j.issn.1001-5256.2022.03.003.
    [22] GOTOH K, YAMADA T, ISHIKAWA O, et al. A novel image-guided surgery of hepatocellular carcinoma by indocyanine green fluorescence imaging navigation[J]. J Surg Oncol, 2009, 100(1): 75-79. DOI: 10.1002/jso.21272.
    [23] INOUE Y, TANAKA R, KOMEDA K, et al. Fluorescence detection of malignant liver tumors using 5-aminolevulinic acid-mediated photodynamic diagnosis: principles, technique, and clinical experience[J]. World J Surg, 2014, 38(7): 1786-1794. DOI: 10.1007/s00268-014-2463-9.
    [24] SCHNEIDER AR, ZÖPF T, ARNOLD JC, et al. Feasibility and diagnostic impact of fluorescence-based diagnostic laparoscopy in hepatocellular carcinoma: a case report[J]. Endoscopy, 2002, 34(10): 831-834. DOI: 10.1055/s-2002-34299.
    [25] KAIBORI M, MATSUI K, ISHIZAKI M, et al. Intraoperative detection of superficial liver tumors by fluorescence imaging using indocyanine green and 5-aminolevulinic acid[J]. Anticancer Res, 2016, 36(4): 1841-1849.
    [26] CHUNG IW, ELJAMEL S. Risk factors for developing oral 5-aminolevulinic acid-induced side effects in patients undergoing fluorescence guided resection[J]. Photodiagnosis Photodyn Ther, 2013, 10(4): 362-367. DOI: 10.1016/j.pdpdt.2013.03.007.
    [27] SHI C, WU JB, PAN D. Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy[J]. J Biomed Opt, 2016, 21(5): 50901. DOI: 10.1117/1.JBO.21.5.050901.
    [28] ZHAO NN, ZHANG CQ, ZHAO Y, et al. Application of targeting near-infrared fluorescence dye in the study of liver cancer models[J]. Chin J Comp Med, 2017, 27(3): 8-13. DOI: 10.3969/j.issn.1671-7856.2017.03.002.

    赵宁宁, 张彩琴, 赵勇, 等. 靶向性近红外荧光染料在肝癌模型研究中的应用[J]. 中国比较医学杂志, 2017, 27(3): 8-13. DOI: 10.3969/j.issn.1671-7856.2017.03.002.
    [29] WANG QZ, ZHANG C, LI L, et al. The application of heptamethine cyanine dye in optical imaging of hepatocellular carcinoma transplantation model[J]. Lab Anim Comp Med, 2018, 38(4): 250-254. DOI: 10.3969/j.issn.1674-5817.2018.04.002.

    王勤周, 张成, 李丽, 等. 七甲川菁荧光染料在肝细胞癌移植模型活体成像中的应用[J]. 实验动物与比较医学, 2018, 38(4): 250-254. DOI: 10.3969/j.issn.1674-5817.2018.04.002.
    [30] LI FQ, ZHANG SX, AN LX, et al. In vivo molecular targeting effects of anti-Sp17- ICG-Der-02 on hepatocellular carcinoma evaluated by an optical imaging system[J]. J Exp Clin Cancer Res, 2011, 30(1): 25. DOI: 10.1186/1756-9966-30-25.
    [31] HE H, TU X, ZHANG J, et al. A novel antibody targeting CD24 and hepatocellular carcinoma in vivo by near-infrared fluorescence imaging[J]. Immunobiology, 2015, 220(12): 1328-1336. DOI: 10.1016/j.imbio.2015.07.010.
    [32] ZHU D, QIN Y, WANG J, et al. Novel glypican-3-binding peptide for in vivo hepatocellular carcinoma fluorescent imaging[J]. Bioconjug Chem, 2016, 27(3): 831-839. DOI: 10.1021/acs.bioconjchem.6b00030.
    [33] QIN ZN, WANG JJ, WANG Y, et al. Identification of a glypican-3-binding peptide for in vivo non-invasive human hepatocellular carcinoma detection[J]. Macromol Biosci, 2017, 17(4): 1600335. DOI: 10.1002/mabi.201600335.
    [34] LU JX, WANG J, LING DS. Surface engineering of nanoparticles for targeted delivery to hepatocellular carcinoma[J]. Small, 2018, 14(5): 1702037. DOI: 10.1002/smll.201702037.
    [35] ZENG CT, SHANG WT, WANG K, et al. Intraoperative identification of liver cancer microfoci using a targeted near-infrared fluorescent probe for imaging-guided surgery[J]. Sci Rep, 2016, 6: 21959. DOI: 10.1038/srep21959.
    [36] ZHANG X, LI S, MA H, et al. Activatable NIR-Ⅱ organic fluorescent probes for bioimaging[J]. Theranostics, 2022, 12(7): 3345-3371. DOI: 10.7150/thno.71359.
    [37] CARR JA, FRANKE D, CARAM JR, et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green[J]. Proc Natl Acad Sci U S A, 2018, 115(17): 4465-4470. DOI: 10.1073/pnas.1718917115.
    [38] HU Z, FANG C, LI B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-Ⅰ/Ⅱ windows[J]. Nat Biomed Eng, 2020, 4(3): 259-271. DOI: 10.1038/s41551-019-0494-0.
    [39] DING F, LI C, XU Y, et al. PEGylation regulates self-assembled small-molecule dye-based probes from single molecule to nanoparticle size for multifunctional NIR-Ⅱ bioimaging[J]. Adv Healthc Mater, 2018, 7(23): e1800973. DOI: 10.1002/adhm.201800973.
    [40] REN Y, HE S, HUTTAD L, et al. An NIR-Ⅱ/MR dual modal nanoprobe for liver cancer imaging[J]. Nanoscale, 2020, 12(21): 11510-11517. DOI: 10.1039/d0nr00075b.
    [41] ZHAO M, LI B, WU Y, et al. A Tumor-microenvironment-responsive lanthanide-cyanine fret sensor for NIR-Ⅱ luminescence-lifetime in situ imaging of hepatocellular carcinoma[J]. Adv Mater, 2020, 32(28): e2001172. DOI: 10.1002/adma.202001172.
    [42] HERNOT S, van MANEN L, DEBIE P, et al. Latest developments in molecular tracers for fluorescence image-guided cancer surgery[J]. Lancet Oncol, 2019, 20(7): e354-e367. DOI: 10.1016/S1470-2045(19)30317-1.
  • 加载中
计量
  • 文章访问数:  442
  • HTML全文浏览量:  133
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-09
  • 录用日期:  2022-07-27
  • 出版日期:  2023-03-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回